Upload model
Browse files- modeling_spice_cnn.py +10 -8
- pytorch_model.bin +1 -1
modeling_spice_cnn.py
CHANGED
@@ -1,9 +1,11 @@
|
|
1 |
import torch.nn as nn
|
|
|
2 |
# from torchsummary import summary
|
3 |
|
4 |
from transformers import PreTrainedModel
|
5 |
|
6 |
-
from
|
|
|
7 |
|
8 |
class SpiceCNNModelForImageClassification(PreTrainedModel):
|
9 |
config_class = SpiceCNNConfig
|
@@ -11,26 +13,25 @@ class SpiceCNNModelForImageClassification(PreTrainedModel):
|
|
11 |
def __init__(self, config: SpiceCNNConfig):
|
12 |
super().__init__(config)
|
13 |
layers = [
|
14 |
-
nn.Conv2d(
|
|
|
|
|
15 |
nn.BatchNorm2d(16),
|
16 |
nn.ReLU(),
|
17 |
nn.MaxPool2d(kernel_size=config.pooling_size),
|
18 |
-
|
19 |
nn.Conv2d(16, 32, kernel_size=config.kernel_size, padding=1),
|
20 |
nn.BatchNorm2d(32),
|
21 |
nn.ReLU(),
|
22 |
nn.MaxPool2d(kernel_size=config.pooling_size),
|
23 |
-
|
24 |
nn.Conv2d(32, 64, kernel_size=config.kernel_size, padding=1),
|
25 |
nn.BatchNorm2d(64),
|
26 |
nn.ReLU(),
|
27 |
nn.MaxPool2d(kernel_size=config.pooling_size),
|
28 |
-
|
29 |
nn.Flatten(),
|
30 |
-
nn.Linear(64*3*3, 128),
|
31 |
nn.ReLU(),
|
32 |
nn.Dropout(0.5),
|
33 |
-
nn.Linear(128, config.num_classes)
|
34 |
]
|
35 |
self.model = nn.Sequential(*layers)
|
36 |
|
@@ -41,7 +42,8 @@ class SpiceCNNModelForImageClassification(PreTrainedModel):
|
|
41 |
loss = loss_fnc(logits, labels)
|
42 |
return {"loss": loss, "logits": logits}
|
43 |
return {"logits": logits}
|
44 |
-
|
|
|
45 |
# config = SpiceCNNConfig(in_channels=1)
|
46 |
# cnn = SpiceCNNModelForImageClassification(config)
|
47 |
# summary(cnn, (1,28,28))
|
|
|
1 |
import torch.nn as nn
|
2 |
+
|
3 |
# from torchsummary import summary
|
4 |
|
5 |
from transformers import PreTrainedModel
|
6 |
|
7 |
+
from .configuration_spice_cnn import SpiceCNNConfig
|
8 |
+
|
9 |
|
10 |
class SpiceCNNModelForImageClassification(PreTrainedModel):
|
11 |
config_class = SpiceCNNConfig
|
|
|
13 |
def __init__(self, config: SpiceCNNConfig):
|
14 |
super().__init__(config)
|
15 |
layers = [
|
16 |
+
nn.Conv2d(
|
17 |
+
config.in_channels, 16, kernel_size=config.kernel_size, padding=1
|
18 |
+
),
|
19 |
nn.BatchNorm2d(16),
|
20 |
nn.ReLU(),
|
21 |
nn.MaxPool2d(kernel_size=config.pooling_size),
|
|
|
22 |
nn.Conv2d(16, 32, kernel_size=config.kernel_size, padding=1),
|
23 |
nn.BatchNorm2d(32),
|
24 |
nn.ReLU(),
|
25 |
nn.MaxPool2d(kernel_size=config.pooling_size),
|
|
|
26 |
nn.Conv2d(32, 64, kernel_size=config.kernel_size, padding=1),
|
27 |
nn.BatchNorm2d(64),
|
28 |
nn.ReLU(),
|
29 |
nn.MaxPool2d(kernel_size=config.pooling_size),
|
|
|
30 |
nn.Flatten(),
|
31 |
+
nn.Linear(64 * 3 * 3, 128),
|
32 |
nn.ReLU(),
|
33 |
nn.Dropout(0.5),
|
34 |
+
nn.Linear(128, config.num_classes),
|
35 |
]
|
36 |
self.model = nn.Sequential(*layers)
|
37 |
|
|
|
42 |
loss = loss_fnc(logits, labels)
|
43 |
return {"loss": loss, "logits": logits}
|
44 |
return {"logits": logits}
|
45 |
+
|
46 |
+
|
47 |
# config = SpiceCNNConfig(in_channels=1)
|
48 |
# cnn = SpiceCNNModelForImageClassification(config)
|
49 |
# summary(cnn, (1,28,28))
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 402812
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9099bac65074f55cf277404cf2daffecc6893d84cdda384e6e95eb6d6a257914
|
3 |
size 402812
|