--- library_name: peft license: other base_model: Qwen/Qwen2.5-72B tags: - axolotl - generated_from_trainer datasets: - sumuks/openreview_wintermute_0.2_training_data language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara model-index: - name: purple-wintermute-0.2-72b results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: Qwen/Qwen2.5-72B hub_model_id: sumuks/purple-wintermute-0.2-72b trust_remote_code: true load_in_8bit: false load_in_4bit: false strict: false bf16: true hf_use_auth_token: true plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_glu_activation: true liger_layer_norm: true liger_fused_linear_cross_entropy: true save_safetensors: datasets: - path: sumuks/openreview_wintermute_0.2_training_data type: completion field: text dataset_prepared_path: .axolotl_cache_data/wintermute_0.2 shuffle_merged_datasets: true # dataset_exact_deduplication: true val_set_size: 0.005 output_dir: ./../../outputs/purple-wintermute-0.2-72b push_dataset_to_hub: sumuks/purple_wintermute_0.2_training_data_in_progress sequence_length: 2048 sample_packing: true pad_to_sequence_len: true adapter: lora lora_r: 256 lora_alpha: 32 lora_dropout: 0.05 peft_use_rslora: true lora_target_linear: true gradient_accumulation_steps: 4 micro_batch_size: 8 eval_batch_size: 1 num_epochs: 3 learning_rate: 5e-5 warmup_ratio: 0.05 evals_per_epoch: 3 saves_per_epoch: 5 gradient_checkpointing: true lr_scheduler: cosine optimizer: paged_adamw_8bit profiler_steps: 100 save_safetensors: true train_on_inputs: true wandb_project: wintermute wandb_name: purple-wintermute-0.2-72b deepspeed: deepspeed_configs/zero3_bf16.json ```

# purple-wintermute-0.2-72b This model is a fine-tuned version of [Qwen/Qwen2.5-72B](https://huggingface.co/Qwen/Qwen2.5-72B) on the sumuks/openreview_wintermute_0.2_training_data dataset. It achieves the following results on the evaluation set: - Loss: 1.3017 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 8 - optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 388 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0004 | 1 | 2.5112 | | 1.3654 | 0.3333 | 864 | 1.6504 | | 0.9929 | 0.6665 | 1728 | 1.4144 | | 0.9039 | 0.9998 | 2592 | 1.3083 | | 0.8161 | 1.3333 | 3456 | 1.2935 | | 0.7815 | 1.6665 | 4320 | 1.2816 | | 0.7658 | 1.9998 | 5184 | 1.2775 | | 0.7004 | 2.3333 | 6048 | 1.2995 | | 0.6694 | 2.6665 | 6912 | 1.3013 | | 0.6798 | 2.9998 | 7776 | 1.3017 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.1 - Pytorch 2.5.1 - Datasets 3.2.0 - Tokenizers 0.21.0