VarunKodathala's picture
Upload folder using huggingface_hub
0e37bb2 verified
raw
history blame
22.5 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import drop_path
def build_action_block_causal_attention_mask(T, H, W, add_tokens=1):
N_T = add_tokens + (H * W)
N = T * N_T
mask = torch.zeros(N, N).bool()
mask_block = torch.ones(N_T, N_T).bool()
local_window_time = T
for t1 in range(T):
for t2 in range(max(0, t1 - local_window_time + 1), t1 + 1):
mask[t1 * N_T : (t1 + 1) * N_T, t2 * N_T : (t2 + 1) * N_T] = mask_block
return mask
def rotate_queries_or_keys(x, pos):
B, num_heads, N, D = x.size()
assert D % 2 == 0, "Embedding dimension must be a multiple of 2 for block matrix rotation"
# -- compute angle for each position
omega = torch.arange(D // 2, dtype=x.dtype, device=x.device)
omega /= D / 2.0
omega = 1.0 / 10000**omega # (D/2,)
freq = torch.einsum("..., f -> ... f", pos, omega) # (..., N, D/2), outer product
# -- build rotation matrix and apply
emb_sin = freq.sin() # (..., N, D/2)
emb_cos = freq.cos() # (..., N, D/2)
emb_sin = emb_sin.squeeze(-1).repeat(1, 1, 1, 2)
emb_cos = emb_cos.squeeze(-1).repeat(1, 1, 1, 2)
# --
y = x.unflatten(-1, (-1, 2))
y1, y2 = y.unbind(
dim=-1,
)
y = torch.stack((-y2, y1), dim=-1)
y = y.flatten(-2)
return (x * emb_cos) + (y * emb_sin)
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class MLP(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class SwiGLUFFN(nn.Module):
def __init__(
self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.0, wide_silu=True
):
super().__init__()
out_features = out_features or in_features
swiglu_hidden_features = hidden_features = hidden_features or in_features
if wide_silu:
swiglu_hidden_features = int(2 * hidden_features / 3)
align_as = 8
swiglu_hidden_features = (swiglu_hidden_features + align_as - 1) // align_as * align_as
self.fc1 = nn.Linear(in_features, swiglu_hidden_features)
self.fc2 = nn.Linear(in_features, swiglu_hidden_features)
self.act = act_layer()
self.fc3 = nn.Linear(swiglu_hidden_features, out_features)
def forward(self, x):
x1 = self.fc1(x)
x2 = self.fc2(x)
hidden = F.silu(x1) * x2
return self.fc3(hidden)
class ACRoPEAttention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
use_sdpa=True,
is_causal=False,
grid_size=16,
):
super().__init__()
self.num_heads = num_heads
self.head_dim = head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop_prob = proj_drop
self.proj_drop = nn.Dropout(proj_drop)
self.use_sdpa = use_sdpa
# --
self.d_dim = int(2 * ((head_dim // 3) // 2))
self.h_dim = int(2 * ((head_dim // 3) // 2))
self.w_dim = int(2 * ((head_dim // 3) // 2))
self.grid_size = grid_size
self.is_causal = is_causal
def _get_frame_pos(self, ids, H_patches, W_patches):
tokens_per_frame = int(H_patches * W_patches)
return ids // tokens_per_frame
def _get_height_pos(self, ids, H_patches, W_patches):
# Remove frame component from ids
tokens_per_frame = int(H_patches * W_patches)
tokens_per_row = W_patches
frame_ids = self._get_frame_pos(ids, H_patches, W_patches)
ids = ids - tokens_per_frame * frame_ids
# --
return ids // tokens_per_row
def separate_positions(self, ids, H_patches, W_patches):
tokens_per_frame = int(H_patches * W_patches)
tokens_per_row = W_patches
frame_ids = self._get_frame_pos(ids, H_patches, W_patches)
# --
height_ids = self._get_height_pos(ids, H_patches, W_patches)
# --
# Remove frame component from ids (1st term) and height component (2nd term)
width_ids = (ids - tokens_per_frame * frame_ids) - tokens_per_row * height_ids
return 1.0 * frame_ids, 1.0 * height_ids, 1.0 * width_ids
def forward(self, x, mask=None, attn_mask=None, T=None, H=None, W=None, action_tokens=0):
B, N, C = x.size()
# -- compute position of each frame token
if mask is not None:
mask = mask.unsqueeze(1).repeat(1, self.num_heads, 1)
d_mask, h_mask, w_mask = self.separate_positions(mask, H, W)
else:
mask = torch.arange(int(T * H * W), device=x.device)
d_mask, h_mask, w_mask = self.separate_positions(mask, H, W)
# -- snap spatial positions to grid size
h_mask *= self.grid_size / H
w_mask *= self.grid_size / W
# -- split out action tokens from sequence
if action_tokens > 0:
x = x.view(B, -1, action_tokens + H * W, C) # [B, T, 1+H*W, D]
action_q, action_k, action_v = [], [], []
for i in range(action_tokens):
a = x[:, :, i : i + 1, :].flatten(1, 2)
# Note action tokens do not work with masking
# -- compute qkv for action tokens and rotate
qkv = self.qkv(a).unflatten(-1, (3, self.num_heads, -1)).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # [B, num_heads, N, D]
# --
qd = rotate_queries_or_keys(q[..., : self.d_dim], pos=torch.arange(T, device=x.device))
kd = rotate_queries_or_keys(k[..., : self.d_dim], pos=torch.arange(T, device=x.device))
qr = q[..., self.d_dim :]
kr = k[..., self.d_dim :]
action_q += [torch.cat([qd, qr], dim=-1).view(B, self.num_heads, T, 1, -1)]
action_k += [torch.cat([kd, kr], dim=-1).view(B, self.num_heads, T, 1, -1)]
action_v += [v.view(B, self.num_heads, T, 1, -1)]
action_q = torch.cat(action_q, dim=3).flatten(2, 3)
action_k = torch.cat(action_k, dim=3).flatten(2, 3)
action_v = torch.cat(action_v, dim=3).flatten(2, 3)
x = x[:, :, action_tokens:, :].flatten(1, 2)
# -- compute qkv for frame tokens and rotate
qkv = self.qkv(x).unflatten(-1, (3, self.num_heads, -1)).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # [B, num_heads, N, D]
s = 0
# Rotate depth
qd = rotate_queries_or_keys(q[..., s : s + self.d_dim], pos=d_mask)
kd = rotate_queries_or_keys(k[..., s : s + self.d_dim], pos=d_mask)
s += self.d_dim
# Rotate height dim
qh = rotate_queries_or_keys(q[..., s : s + self.h_dim], pos=h_mask)
kh = rotate_queries_or_keys(k[..., s : s + self.h_dim], pos=h_mask)
s += self.h_dim
# Rotate width dim
qw = rotate_queries_or_keys(q[..., s : s + self.w_dim], pos=w_mask)
kw = rotate_queries_or_keys(k[..., s : s + self.w_dim], pos=w_mask)
s += self.w_dim
# Combine rotated dimension
if s < self.head_dim:
qr = q[..., s:]
kr = k[..., s:]
q = torch.cat([qd, qh, qw, qr], dim=-1)
k = torch.cat([kd, kh, kw, kr], dim=-1)
else:
q = torch.cat([qd, qh, qw], dim=-1)
k = torch.cat([kd, kh, kw], dim=-1)
if action_tokens > 0:
def merge_(tx, ta):
"""tx, tx in [B, num_heads, N, D]"""
tx = tx.view(B, self.num_heads, T, H * W, -1) # [B, T, H*W, D]
ta = ta.view(B, self.num_heads, T, action_tokens, -1) # [B, T, A, D]
return torch.cat([ta, tx], dim=3).flatten(2, 3)
q = merge_(q, action_q)
k = merge_(k, action_k)
v = merge_(v, action_v)
if attn_mask is not None or self.use_sdpa:
with torch.backends.cuda.sdp_kernel():
x = F.scaled_dot_product_attention(
q, k, v, dropout_p=self.proj_drop_prob, is_causal=self.is_causal, attn_mask=attn_mask
)
attn = None
else:
attn = (q @ k.transpose(-2, -1)) * self.scale # [B, num_heads, D, D]
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ v
x = x.transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class RoPEAttention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
use_sdpa=True,
grid_size=14,
is_causal=False,
):
super().__init__()
self.num_heads = num_heads
self.head_dim = head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop_prob = proj_drop
self.proj_drop = nn.Dropout(proj_drop)
self.use_sdpa = use_sdpa
# --
self.d_dim = int(2 * ((head_dim // 3) // 2))
self.h_dim = int(2 * ((head_dim // 3) // 2))
self.w_dim = int(2 * ((head_dim // 3) // 2))
self.grid_size = grid_size
self.is_causal = is_causal
def _get_frame_pos(self, ids, H_patches=None, W_patches=None):
if H_patches is None or W_patches is None:
tokens_per_frame = int(self.grid_size * self.grid_size)
else:
tokens_per_frame = int(H_patches * W_patches)
return ids // tokens_per_frame
def _get_height_pos(self, ids, H_patches=None, W_patches=None):
# Remove frame component from ids
if H_patches is None or W_patches is None:
tokens_per_frame = int(self.grid_size * self.grid_size)
tokens_per_row = self.grid_size
else:
tokens_per_frame = int(H_patches * W_patches)
tokens_per_row = W_patches
frame_ids = self._get_frame_pos(ids, H_patches, W_patches)
ids = ids - tokens_per_frame * frame_ids
# --
return ids // tokens_per_row
def separate_positions(self, ids, H_patches=None, W_patches=None):
if H_patches is None or W_patches is None:
tokens_per_frame = int(self.grid_size * self.grid_size)
tokens_per_row = self.grid_size
else:
tokens_per_frame = int(H_patches * W_patches)
tokens_per_row = W_patches
frame_ids = self._get_frame_pos(ids, H_patches, W_patches)
# --
height_ids = self._get_height_pos(ids, H_patches, W_patches)
# --
# Remove frame component from ids (1st term) and height component (2nd term)
width_ids = (ids - tokens_per_frame * frame_ids) - tokens_per_row * height_ids
return frame_ids, height_ids, width_ids
def forward(self, x, mask=None, attn_mask=None, T=None, H_patches=None, W_patches=None):
B, N, C = x.size()
grid_depth = int(N // (self.grid_size * self.grid_size))
qkv = self.qkv(x).unflatten(-1, (3, self.num_heads, -1)).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # [B, num_heads, N, D]
if mask is not None:
mask = mask.unsqueeze(1).repeat(1, self.num_heads, 1)
d_mask, h_mask, w_mask = self.separate_positions(mask, H_patches, W_patches)
else:
if T is None or H_patches is None or W_patches is None:
mask = torch.arange(int(grid_depth * self.grid_size * self.grid_size), device=x.device)
else:
mask = torch.arange(int(T * H_patches * W_patches), device=x.device)
d_mask, h_mask, w_mask = self.separate_positions(mask, H_patches, W_patches)
s = 0
# Rotate depth
qd = rotate_queries_or_keys(q[..., s : s + self.d_dim], pos=d_mask)
kd = rotate_queries_or_keys(k[..., s : s + self.d_dim], pos=d_mask)
s += self.d_dim
# Rotate height dim
qh = rotate_queries_or_keys(q[..., s : s + self.h_dim], pos=h_mask)
kh = rotate_queries_or_keys(k[..., s : s + self.h_dim], pos=h_mask)
s += self.h_dim
# Rotate width dim
qw = rotate_queries_or_keys(q[..., s : s + self.w_dim], pos=w_mask)
kw = rotate_queries_or_keys(k[..., s : s + self.w_dim], pos=w_mask)
s += self.w_dim
# Combine rotated dimension
if s < self.head_dim:
qr = q[..., s:]
kr = k[..., s:]
q = torch.cat([qd, qh, qw, qr], dim=-1)
k = torch.cat([kd, kh, kw, kr], dim=-1)
else:
q = torch.cat([qd, qh, qw], dim=-1)
k = torch.cat([kd, kh, kw], dim=-1)
if attn_mask is not None or self.use_sdpa:
with torch.backends.cuda.sdp_kernel():
x = F.scaled_dot_product_attention(
q, k, v, dropout_p=self.proj_drop_prob, is_causal=self.is_causal, attn_mask=attn_mask
)
attn = None
else:
attn = (q @ k.transpose(-2, -1)) * self.scale # [B, num_heads, D, D]
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ v
x = x.transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
use_sdpa=True,
is_causal=False,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop_prob = proj_drop
self.proj_drop = nn.Dropout(proj_drop)
self.use_sdpa = use_sdpa
self.is_causal = is_causal
def forward(self, x, mask=None, attn_mask=None):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # [B, num_heads, N, D]
if attn_mask is not None or self.use_sdpa:
with torch.backends.cuda.sdp_kernel():
x = F.scaled_dot_product_attention(
q, k, v, dropout_p=self.proj_drop_prob, is_causal=self.is_causal, attn_mask=attn_mask
)
attn = None
else:
attn = (q @ k.transpose(-2, -1)) * self.scale # [B, num_heads, D, D]
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ v
x = x.transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class ACBlock(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
wide_silu=True,
norm_layer=nn.LayerNorm,
use_sdpa=True,
is_causal=False,
grid_size=16,
use_rope=False,
**kwargs,
):
super().__init__()
self.norm1 = norm_layer(dim)
if use_rope:
self.attn = ACRoPEAttention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
use_sdpa=use_sdpa,
is_causal=is_causal,
grid_size=grid_size,
proj_drop=drop,
)
else:
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
use_sdpa=use_sdpa,
is_causal=is_causal,
proj_drop=drop,
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
if act_layer is nn.SiLU:
self.mlp = SwiGLUFFN(
in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, wide_silu=wide_silu, drop=drop
)
else:
self.mlp = MLP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x, mask=None, attn_mask=None, T=None, H=None, W=None, action_tokens=0):
y = self.norm1(x)
if isinstance(self.attn, ACRoPEAttention):
y = self.attn(y, mask=mask, attn_mask=attn_mask, T=T, H=H, W=W, action_tokens=action_tokens)
else:
y = self.attn(y, mask=mask, attn_mask=attn_mask)
x = x + self.drop_path(y)
y = self.norm2(x)
x = x + self.drop_path(self.mlp(y))
return x
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
wide_silu=True,
norm_layer=nn.LayerNorm,
use_sdpa=True,
is_causal=False,
grid_size=16,
use_rope=False,
**kwargs,
):
super().__init__()
self.norm1 = norm_layer(dim)
if use_rope:
self.attn = RoPEAttention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
use_sdpa=use_sdpa,
is_causal=is_causal,
grid_size=grid_size,
proj_drop=drop,
)
else:
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
use_sdpa=use_sdpa,
is_causal=is_causal,
proj_drop=drop,
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
if act_layer is nn.SiLU:
self.mlp = SwiGLUFFN(
in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, wide_silu=wide_silu, drop=drop
)
else:
self.mlp = MLP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x, mask=None, attn_mask=None, T=None, H_patches=None, W_patches=None):
if isinstance(self.attn, RoPEAttention):
y = self.attn(self.norm1(x), mask=mask, attn_mask=attn_mask, T=T, H_patches=H_patches, W_patches=W_patches)
else:
y = self.attn(self.norm1(x), mask=mask, attn_mask=attn_mask)
x = x + self.drop_path(y)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class CrossAttention(nn.Module):
def __init__(self, dim, num_heads=12, qkv_bias=False, use_sdpa=True):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim**-0.5
self.q = nn.Linear(dim, dim, bias=qkv_bias)
self.kv = nn.Linear(dim, int(dim * 2), bias=qkv_bias)
# self.proj = nn.Linear(dim, dim)
self.use_sdpa = use_sdpa
def forward(self, q, x):
B, n, C = q.shape
q = self.q(q).reshape(B, n, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
B, N, C = x.shape
kv = self.kv(x).reshape(B, N, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
k, v = kv[0], kv[1] # (batch_size, num_heads, seq_len, feature_dim_per_head)
if self.use_sdpa:
with torch.backends.cuda.sdp_kernel():
q = F.scaled_dot_product_attention(q, k, v)
else:
xattn = (q @ k.transpose(-2, -1)) * self.scale
xattn = xattn.softmax(dim=-1) # (batch_size, num_heads, query_len, seq_len)
q = xattn @ v
q = q.transpose(1, 2).reshape(B, n, C)
return q
class CrossAttentionBlock(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False, act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.xattn = CrossAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias)
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = MLP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer)
def forward(self, q, x):
y = self.xattn(q, self.norm1(x))
q = q + y
q = q + self.mlp(self.norm2(q))
return q