File size: 3,344 Bytes
a107251 9e39e9f a107251 9e39e9f a107251 753d288 05a9754 a107251 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: BERTModified-rawbert-finetuned-wikitext-test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BERTModified-rawbert-finetuned-wikitext-test
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 21.1324
- Precision: 0.0411
- Recall: 0.0411
- F1: 0.0411
- Accuracy: 0.0411
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 21.2329 | 1.0 | 25 | 21.1260 | 0.0157 | 0.0157 | 0.0157 | 0.0157 |
| 18.2402 | 2.0 | 50 | 20.8705 | 0.0181 | 0.0181 | 0.0181 | 0.0181 |
| 15.7819 | 3.0 | 75 | 20.8017 | 0.0206 | 0.0206 | 0.0206 | 0.0206 |
| 13.5492 | 4.0 | 100 | 20.7470 | 0.0206 | 0.0206 | 0.0206 | 0.0206 |
| 11.836 | 5.0 | 125 | 20.7319 | 0.0254 | 0.0254 | 0.0254 | 0.0254 |
| 10.306 | 6.0 | 150 | 20.7540 | 0.0314 | 0.0314 | 0.0314 | 0.0314 |
| 9.0142 | 7.0 | 175 | 20.7665 | 0.0363 | 0.0363 | 0.0363 | 0.0363 |
| 7.991 | 8.0 | 200 | 20.8323 | 0.0363 | 0.0363 | 0.0363 | 0.0363 |
| 7.0936 | 9.0 | 225 | 20.9107 | 0.0387 | 0.0387 | 0.0387 | 0.0387 |
| 6.3742 | 10.0 | 250 | 20.9569 | 0.0399 | 0.0399 | 0.0399 | 0.0399 |
| 5.7236 | 11.0 | 275 | 20.9811 | 0.0375 | 0.0375 | 0.0375 | 0.0375 |
| 5.3262 | 12.0 | 300 | 21.0331 | 0.0435 | 0.0435 | 0.0435 | 0.0435 |
| 4.8222 | 13.0 | 325 | 21.0361 | 0.0387 | 0.0387 | 0.0387 | 0.0387 |
| 4.5049 | 14.0 | 350 | 21.0610 | 0.0363 | 0.0363 | 0.0363 | 0.0363 |
| 4.1877 | 15.0 | 375 | 21.0827 | 0.0387 | 0.0387 | 0.0387 | 0.0387 |
| 3.9705 | 16.0 | 400 | 21.1020 | 0.0435 | 0.0435 | 0.0435 | 0.0435 |
| 3.8091 | 17.0 | 425 | 21.0863 | 0.0435 | 0.0435 | 0.0435 | 0.0435 |
| 3.5978 | 18.0 | 450 | 21.1236 | 0.0447 | 0.0447 | 0.0447 | 0.0447 |
| 3.5991 | 19.0 | 475 | 21.1211 | 0.0435 | 0.0435 | 0.0435 | 0.0435 |
| 3.5433 | 20.0 | 500 | 21.1236 | 0.0435 | 0.0435 | 0.0435 | 0.0435 |
### Framework versions
- Transformers 4.39.1
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|