--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BERTModified-rawbert-finetuned-wikitext-test results: [] --- # BERTModified-rawbert-finetuned-wikitext-test This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 21.0426 - Precision: 0.0375 - Recall: 0.0375 - F1: 0.0375 - Accuracy: 0.0375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 21.2097 | 1.0 | 25 | 21.0754 | 0.0157 | 0.0157 | 0.0157 | 0.0157 | | 18.2793 | 2.0 | 50 | 20.8093 | 0.0133 | 0.0133 | 0.0133 | 0.0133 | | 15.8444 | 3.0 | 75 | 20.6771 | 0.0157 | 0.0157 | 0.0157 | 0.0157 | | 13.5759 | 4.0 | 100 | 20.6509 | 0.0218 | 0.0218 | 0.0218 | 0.0218 | | 11.8523 | 5.0 | 125 | 20.6608 | 0.0230 | 0.0230 | 0.0230 | 0.0230 | | 10.2973 | 6.0 | 150 | 20.6500 | 0.0242 | 0.0242 | 0.0242 | 0.0242 | | 9.0372 | 7.0 | 175 | 20.7158 | 0.0266 | 0.0266 | 0.0266 | 0.0266 | | 7.9788 | 8.0 | 200 | 20.7644 | 0.0290 | 0.0290 | 0.0290 | 0.0290 | | 7.0864 | 9.0 | 225 | 20.7891 | 0.0278 | 0.0278 | 0.0278 | 0.0278 | | 6.3465 | 10.0 | 250 | 20.8286 | 0.0302 | 0.0302 | 0.0302 | 0.0302 | | 5.6973 | 11.0 | 275 | 20.8867 | 0.0351 | 0.0351 | 0.0351 | 0.0351 | | 5.2951 | 12.0 | 300 | 20.9121 | 0.0363 | 0.0363 | 0.0363 | 0.0363 | | 4.8066 | 13.0 | 325 | 20.9479 | 0.0375 | 0.0375 | 0.0375 | 0.0375 | | 4.4862 | 14.0 | 350 | 21.0011 | 0.0351 | 0.0351 | 0.0351 | 0.0351 | | 4.1891 | 15.0 | 375 | 21.0011 | 0.0363 | 0.0363 | 0.0363 | 0.0363 | | 3.9551 | 16.0 | 400 | 21.0193 | 0.0423 | 0.0423 | 0.0423 | 0.0423 | | 3.7954 | 17.0 | 425 | 21.0099 | 0.0351 | 0.0351 | 0.0351 | 0.0351 | | 3.5836 | 18.0 | 450 | 21.0166 | 0.0411 | 0.0411 | 0.0411 | 0.0411 | | 3.5873 | 19.0 | 475 | 21.0315 | 0.0399 | 0.0399 | 0.0399 | 0.0399 | | 3.5297 | 20.0 | 500 | 21.0524 | 0.0387 | 0.0387 | 0.0387 | 0.0387 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2