Initial commit
Browse files- README.md +36 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 1690.76 +/- 243.94
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: AntBulletEnv-v0
|
20 |
+
type: AntBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:743859b8d8aaf5abcbf2c260c07ffeccca3e5bd7a7351749317b924c81b0cba2
|
3 |
+
size 129189
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f249d5565f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f249d556680>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f249d556710>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f249d5567a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f249d556830>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f249d5568c0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f249d556950>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f249d5569e0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f249d556a70>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f249d556b00>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f249d556b90>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f249d59fb70>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1658587530.9055486,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAA65I8v54jPL4n9xo/zX6lP7by074SKvy+IwGkvonWIj3qOTM/Zy0Lv309QL9IY5s9kGKAv6Hfgj/4GhE/PMMev/ygmz2olQE/e4O9Pnz01D/oaCS/62q5vrejs77GFKA/NGCRv7tzEz/NYve/AIuev5AsZb+rZxG/3lsQPyV2Vj+8UDu/LnwKvlnApT70k08+6INGP3pLqr5SUzq+b0G3v+2mp7/QtWQ+LlSxPkU9rb9Dami7HPboPmRmNj/oOaa/68k0vvuDOz3I/we/5CvzPutmYT9nOt6//XQEPwCLnr9lTn2/LWTcv7GVvb56HYa+686oPgbjFL9OVum9UffBPwQhQz/vUGC/du49vxoyUz1+8E6/L+VPPobYpr2vsa09hAusPw7kM72YXvO9zJIfP8qwUr5a50i/VvUtv4ObUDzrZmE/Zzrev/10BD+grk4/CajXviiZ8T0/Xw8/7iF+P2wSlb5o8DA+j46FvjIVjj/Khzo/AWkAvzaH9b4vLQ0/aLJov3hnz7/WnCQ/PVBAPF2ENT+LJ5O/qRUhv6Xg0j4vSxi/mTc3PptG276xRwDA62ZhP2c63r/9dAQ/AIuev5R0lGIu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAK8zxDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICz1pC9AAAAAKCU3b8AAAAAs62IPAAAAAC0Yt4/AAAAANSVIT0AAAAAzR4AQAAAAACsEAa+AAAAACjX2L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACng7U1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATx2fvQAAAADeGPm/AAAAAFBQ570AAAAAuvvmPwAAAADztiE9AAAAAIeP5T8AAAAAOulGvQAAAAAbf+S/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtVB7tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgONtjz0AAAAAc2rlvwAAAADJr+Y9AAAAABBq4j8AAAAACoCuvQAAAAAM9dk/AAAAAGYk7j0AAAAAs+DmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHj0+DYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDvfra9AAAAAC3J378AAAAAJuvjPQAAAADQ0eo/AAAAAM7BCz0AAAAAiJLhPwAAAAB5Z6e9AAAAAFJIAMAAAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJQxJnCfpUyMAWyUTegDjAF0lEdAp5LgEEC/5HV9lChoBkdAjB/oMrmQsGgHTegDaAhHQKeYO4OMERt1fZQoaAZHQJoqw0YTCchoB03oA2gIR0Cnmaqo60Y1dX2UKGgGR0Cbf0blA/s3aAdN6ANoCEdAp50+MbWEsnV9lChoBkdAlrwXjU/fO2gHTegDaAhHQKefpWS2Yv51fZQoaAZHQJZjwGqxTsJoB03oA2gIR0CnpQFHrhR7dX2UKGgGR0B+26h37k4naAdN6ANoCEdAp6ZgYR/ViHV9lChoBkdAhlS0YbbUPWgHTegDaAhHQKeqC0aZQYV1fZQoaAZHQI0Z3ndO6/ZoB03oA2gIR0CnrGpcX3xndX2UKGgGR0CVsH6u4gA7aAdN6ANoCEdAp7G/rv9cbHV9lChoBkdAitHQVKwpv2gHTegDaAhHQKezH+6y0KJ1fZQoaAZHQJG42yfL9uRoB03oA2gIR0CntrL0rbxmdX2UKGgGR0CT4oAuIyj6aAdN6ANoCEdAp7kece8wpXV9lChoBkdAhBgKOT7l72gHTegDaAhHQKe+k9Htnf51fZQoaAZHQI2CG1YyO7xoB03oA2gIR0Cnv+5ha1TjdX2UKGgGR0CQs2cGC7K8aAdN6ANoCEdAp8ObgXMyJ3V9lChoBkdAlq83QhOgx2gHTegDaAhHQKfF+E6kqMF1fZQoaAZHQJdQtbu+h5BoB03oA2gIR0CnyzFZHNHIdX2UKGgGR0CT746Q/5ckaAdN6ANoCEdAp8yLADaGpXV9lChoBkdAmYdjvRZ2ZGgHTegDaAhHQKfQE7tAs051fZQoaAZHQJThW7f51vFoB03oA2gIR0Cn0qF6Rhc8dX2UKGgGR0Cci58lolD4aAdN6ANoCEdAp9frO3UhFHV9lChoBkdAijALwnYxtmgHTegDaAhHQKfZS7uDzy11fZQoaAZHQJIzx4nndO9oB03oA2gIR0Cn3PlWGRFJdX2UKGgGR0CbpPPbO/tZaAdN6ANoCEdAp99SAJ9iMHV9lChoBkdAmsZz5oGpuWgHTegDaAhHQKfkivStvGZ1fZQoaAZHQJhSthBqsU9oB03oA2gIR0Cn5eX1anrIdX2UKGgGR0CW8tPo3aSLaAdN6ANoCEdAp+mCtHQQc3V9lChoBkdAnFossMAmzGgHTegDaAhHQKfr3yBClad1fZQoaAZHQJqtCuA7PppoB03oA2gIR0Cn8SuCGvfTdX2UKGgGR0CYZNcI7eVLaAdN6ANoCEdAp/KPB3zMA3V9lChoBkdAlp8CrPt2LmgHTegDaAhHQKf2In/kvK51fZQoaAZHQJkyduejEehoB03oA2gIR0Cn+KZz5oGqdX2UKGgGR0CcFFqrilzmaAdN6ANoCEdAp/4JC0F8onV9lChoBkdAkGWWICU5dWgHTegDaAhHQKf/b28qWkd1fZQoaAZHQJrK4dkrf+FoB03oA2gIR0CoAy4HPeHjdX2UKGgGR0CG4fGaQV9GaAdN6ANoCEdAqAWnqJMxoXV9lChoBkdAelRu3c580GgHTRYBaAhHQKgJOrKeTV51fZQoaAZHQJAXIdGRV6xoB03oA2gIR0CoCxO0LMLXdX2UKGgGR0B+74mrsByTaAdN6ANoCEdAqAx02gnMMnV9lChoBkdAl0XIk7fYSWgHTegDaAhHQKgQKy9EkSp1fZQoaAZHQJAKEZbY9PloB02NAmgIR0CoEb5UDMePdX2UKGgGR0CLuwGj9GZvaAdN6ANoCEdAqBhAH3UQTXV9lChoBkdAhndihnJ1aGgHTegDaAhHQKgZtKW9lEt1fZQoaAZHQIbggRAbADdoB03oA2gIR0CoHWvHtF8YdX2UKGgGR0CC0EAPuognaAdN6ANoCEdAqB78HryDqXV9lChoBkdAlVOBxgiNbWgHTegDaAhHQKglRqnFYMh1fZQoaAZHQIAxnyAhB7hoB03oA2gIR0CoJqgG8mKJdX2UKGgGR0CWfrdkauOkaAdN6ANoCEdAqCpK8BdUsHV9lChoBkdAkpjd9MK1HGgHTegDaAhHQKgrxoFFDv51fZQoaAZHQJl2eS6lLvloB03oA2gIR0CoMfqjSG8FdX2UKGgGR0CWWCPP9kz5aAdN6ANoCEdAqDNenO0LMXV9lChoBkdAjaerylN1yWgHTegDaAhHQKg3BZuAI6d1fZQoaAZHQJRj4BRyfcxoB03oA2gIR0CoOJMTFl06dX2UKGgGR0CZyEfr8iwCaAdN6ANoCEdAqD7ZYmsvI3V9lChoBkdAgkf2H+Idl2gHTegDaAhHQKhAND4xk/d1fZQoaAZHQJ2uaCcwxnFoB03oA2gIR0CoQ9xG2CumdX2UKGgGR0CX7diwjdHlaAdN6ANoCEdAqEVWnTAnD3V9lChoBkdAl5KNa+vhZWgHTegDaAhHQKhLdsJpnHx1fZQoaAZHQJZL42OyVwBoB03oA2gIR0CoTN5oGpuNdX2UKGgGR0CXMgazeGfxaAdN6ANoCEdAqFB0BwMpgHV9lChoBkdAks9r9ycTamgHTegDaAhHQKhR61PWQOp1fZQoaAZHQJhKIDgZTAFoB03oA2gIR0CoV//bj94vdX2UKGgGR0CZx4ML4N7TaAdN6ANoCEdAqFlrlgc94nV9lChoBkdAmkKeNkvsaGgHTegDaAhHQKhc8p3os7N1fZQoaAZHQJjojgGbCrNoB03oA2gIR0CoXnOFHrhSdX2UKGgGR0Cbs/3F1jiGaAdN6ANoCEdAqGSLKmsNlXV9lChoBkdAmZ+y7TUiIWgHTegDaAhHQKhl4WEbo8p1fZQoaAZHQJdYHryDqW1oB03oA2gIR0CoaWWtU4rCdX2UKGgGR0CZGa13+uNhaAdN6ANoCEdAqGrmtGNJe3V9lChoBkdAlJsPvnbItGgHTegDaAhHQKhxC4iHIp91fZQoaAZHQJpiw4dZJTVoB03oA2gIR0CocmdcbBGhdX2UKGgGR0CZ954Z/CqIaAdN6ANoCEdAqHYpBHCoCXV9lChoBkdAlFvdORDCxmgHTegDaAhHQKh3uBnSOR11fZQoaAZHQJJsocOskptoB03oA2gIR0Cofd5y2hIwdX2UKGgGR0CbiMX5FgDzaAdN6ANoCEdAqH8zmSyMUHV9lChoBkdAi3A0PhAGCGgHTegDaAhHQKiCxm8M/hV1fZQoaAZHQJOHVtJnQIFoB03oA2gIR0CohEDRD1GtdX2UKGgGR0CYkRQVsUItaAdN6ANoCEdAqIqGBg/kenV9lChoBkdAmzMcCtA9m2gHTegDaAhHQKiL6z1schl1fZQoaAZHQIJ5iS3b215oB03oA2gIR0Coj5tGus90dX2UKGgGR0CdKsPP9kz5aAdN6ANoCEdAqJEhnezlcXV9lChoBkdAjXJShi9ZimgHTX0CaAhHQKiUJsMRYih1fZQoaAZHQJ0aFNCZ4OdoB03oA2gIR0Col2UkWykcdX2UKGgGR0Cbaa9qUNayaAdN6ANoCEdAqJyOgg5imXV9lChoBkdAlqVDoEB8yGgHTegDaAhHQKieENMoMKF1fZQoaAZHQJpvR+rlvIhoB03oA2gIR0CooPrVFx4qdX2UKGgGR0CbFlB5X2dvaAdN6ANoCEdAqKQlSbYsd3V9lChoBkdAmNfonndO7GgHTegDaAhHQKipJ7zCk451fZQoaAZHQJxQjX+VC5VoB03oA2gIR0Coqq4m1IAfdX2UKGgGR0CVKmpX6qKhaAdN6ANoCEdAqK2xw84ginV9lChoBkdAlnIAnhKlHmgHTegDaAhHQKixAe6I3zd1fZQoaAZHQI8Y6yOaOPxoB03oA2gIR0CotiLeqJdjdX2UKGgGR0CX0F+QU5+6aAdN6ANoCEdAqLeo0oBq9HV9lChoBkdAl4jRS9/SY2gHTegDaAhHQKi6nJ6IFeR1fZQoaAZHQJoDukGiYb9oB03oA2gIR0Covd+LFXJYdX2UKGgGR0CbHjRGtp22aAdN6ANoCEdAqMK/aJyhjHV9lChoBkdAnFNqij+Jg2gHTegDaAhHQKjEO274BWB1fZQoaAZHQJXxaUW2w3ZoB03oA2gIR0Coxz/CAMDwdX2UKGgGR0CaeVEx7AtWaAdN6ANoCEdAqMplA3T/hnVlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83a4474b6e3163caa23f06ecb7cc6788088cafd9b6826a3c886c460af49b1e28
|
3 |
+
size 56126
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05d086554ac42afe826c082aa12e6fa3eda09b7515f1fb8899fa8063156685b8
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f249d5565f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f249d556680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f249d556710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f249d5567a0>", "_build": "<function ActorCriticPolicy._build at 0x7f249d556830>", "forward": "<function ActorCriticPolicy.forward at 0x7f249d5568c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f249d556950>", "_predict": "<function ActorCriticPolicy._predict at 0x7f249d5569e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f249d556a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f249d556b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f249d556b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f249d59fb70>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1658587530.9055486, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAA65I8v54jPL4n9xo/zX6lP7by074SKvy+IwGkvonWIj3qOTM/Zy0Lv309QL9IY5s9kGKAv6Hfgj/4GhE/PMMev/ygmz2olQE/e4O9Pnz01D/oaCS/62q5vrejs77GFKA/NGCRv7tzEz/NYve/AIuev5AsZb+rZxG/3lsQPyV2Vj+8UDu/LnwKvlnApT70k08+6INGP3pLqr5SUzq+b0G3v+2mp7/QtWQ+LlSxPkU9rb9Dami7HPboPmRmNj/oOaa/68k0vvuDOz3I/we/5CvzPutmYT9nOt6//XQEPwCLnr9lTn2/LWTcv7GVvb56HYa+686oPgbjFL9OVum9UffBPwQhQz/vUGC/du49vxoyUz1+8E6/L+VPPobYpr2vsa09hAusPw7kM72YXvO9zJIfP8qwUr5a50i/VvUtv4ObUDzrZmE/Zzrev/10BD+grk4/CajXviiZ8T0/Xw8/7iF+P2wSlb5o8DA+j46FvjIVjj/Khzo/AWkAvzaH9b4vLQ0/aLJov3hnz7/WnCQ/PVBAPF2ENT+LJ5O/qRUhv6Xg0j4vSxi/mTc3PptG276xRwDA62ZhP2c63r/9dAQ/AIuev5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAK8zxDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICz1pC9AAAAAKCU3b8AAAAAs62IPAAAAAC0Yt4/AAAAANSVIT0AAAAAzR4AQAAAAACsEAa+AAAAACjX2L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACng7U1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACATx2fvQAAAADeGPm/AAAAAFBQ570AAAAAuvvmPwAAAADztiE9AAAAAIeP5T8AAAAAOulGvQAAAAAbf+S/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtVB7tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgONtjz0AAAAAc2rlvwAAAADJr+Y9AAAAABBq4j8AAAAACoCuvQAAAAAM9dk/AAAAAGYk7j0AAAAAs+DmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHj0+DYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDvfra9AAAAAC3J378AAAAAJuvjPQAAAADQ0eo/AAAAAM7BCz0AAAAAiJLhPwAAAAB5Z6e9AAAAAFJIAMAAAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJQxJnCfpUyMAWyUTegDjAF0lEdAp5LgEEC/5HV9lChoBkdAjB/oMrmQsGgHTegDaAhHQKeYO4OMERt1fZQoaAZHQJoqw0YTCchoB03oA2gIR0Cnmaqo60Y1dX2UKGgGR0Cbf0blA/s3aAdN6ANoCEdAp50+MbWEsnV9lChoBkdAlrwXjU/fO2gHTegDaAhHQKefpWS2Yv51fZQoaAZHQJZjwGqxTsJoB03oA2gIR0CnpQFHrhR7dX2UKGgGR0B+26h37k4naAdN6ANoCEdAp6ZgYR/ViHV9lChoBkdAhlS0YbbUPWgHTegDaAhHQKeqC0aZQYV1fZQoaAZHQI0Z3ndO6/ZoB03oA2gIR0CnrGpcX3xndX2UKGgGR0CVsH6u4gA7aAdN6ANoCEdAp7G/rv9cbHV9lChoBkdAitHQVKwpv2gHTegDaAhHQKezH+6y0KJ1fZQoaAZHQJG42yfL9uRoB03oA2gIR0CntrL0rbxmdX2UKGgGR0CT4oAuIyj6aAdN6ANoCEdAp7kece8wpXV9lChoBkdAhBgKOT7l72gHTegDaAhHQKe+k9Htnf51fZQoaAZHQI2CG1YyO7xoB03oA2gIR0Cnv+5ha1TjdX2UKGgGR0CQs2cGC7K8aAdN6ANoCEdAp8ObgXMyJ3V9lChoBkdAlq83QhOgx2gHTegDaAhHQKfF+E6kqMF1fZQoaAZHQJdQtbu+h5BoB03oA2gIR0CnyzFZHNHIdX2UKGgGR0CT746Q/5ckaAdN6ANoCEdAp8yLADaGpXV9lChoBkdAmYdjvRZ2ZGgHTegDaAhHQKfQE7tAs051fZQoaAZHQJThW7f51vFoB03oA2gIR0Cn0qF6Rhc8dX2UKGgGR0Cci58lolD4aAdN6ANoCEdAp9frO3UhFHV9lChoBkdAijALwnYxtmgHTegDaAhHQKfZS7uDzy11fZQoaAZHQJIzx4nndO9oB03oA2gIR0Cn3PlWGRFJdX2UKGgGR0CbpPPbO/tZaAdN6ANoCEdAp99SAJ9iMHV9lChoBkdAmsZz5oGpuWgHTegDaAhHQKfkivStvGZ1fZQoaAZHQJhSthBqsU9oB03oA2gIR0Cn5eX1anrIdX2UKGgGR0CW8tPo3aSLaAdN6ANoCEdAp+mCtHQQc3V9lChoBkdAnFossMAmzGgHTegDaAhHQKfr3yBClad1fZQoaAZHQJqtCuA7PppoB03oA2gIR0Cn8SuCGvfTdX2UKGgGR0CYZNcI7eVLaAdN6ANoCEdAp/KPB3zMA3V9lChoBkdAlp8CrPt2LmgHTegDaAhHQKf2In/kvK51fZQoaAZHQJkyduejEehoB03oA2gIR0Cn+KZz5oGqdX2UKGgGR0CcFFqrilzmaAdN6ANoCEdAp/4JC0F8onV9lChoBkdAkGWWICU5dWgHTegDaAhHQKf/b28qWkd1fZQoaAZHQJrK4dkrf+FoB03oA2gIR0CoAy4HPeHjdX2UKGgGR0CG4fGaQV9GaAdN6ANoCEdAqAWnqJMxoXV9lChoBkdAelRu3c580GgHTRYBaAhHQKgJOrKeTV51fZQoaAZHQJAXIdGRV6xoB03oA2gIR0CoCxO0LMLXdX2UKGgGR0B+74mrsByTaAdN6ANoCEdAqAx02gnMMnV9lChoBkdAl0XIk7fYSWgHTegDaAhHQKgQKy9EkSp1fZQoaAZHQJAKEZbY9PloB02NAmgIR0CoEb5UDMePdX2UKGgGR0CLuwGj9GZvaAdN6ANoCEdAqBhAH3UQTXV9lChoBkdAhndihnJ1aGgHTegDaAhHQKgZtKW9lEt1fZQoaAZHQIbggRAbADdoB03oA2gIR0CoHWvHtF8YdX2UKGgGR0CC0EAPuognaAdN6ANoCEdAqB78HryDqXV9lChoBkdAlVOBxgiNbWgHTegDaAhHQKglRqnFYMh1fZQoaAZHQIAxnyAhB7hoB03oA2gIR0CoJqgG8mKJdX2UKGgGR0CWfrdkauOkaAdN6ANoCEdAqCpK8BdUsHV9lChoBkdAkpjd9MK1HGgHTegDaAhHQKgrxoFFDv51fZQoaAZHQJl2eS6lLvloB03oA2gIR0CoMfqjSG8FdX2UKGgGR0CWWCPP9kz5aAdN6ANoCEdAqDNenO0LMXV9lChoBkdAjaerylN1yWgHTegDaAhHQKg3BZuAI6d1fZQoaAZHQJRj4BRyfcxoB03oA2gIR0CoOJMTFl06dX2UKGgGR0CZyEfr8iwCaAdN6ANoCEdAqD7ZYmsvI3V9lChoBkdAgkf2H+Idl2gHTegDaAhHQKhAND4xk/d1fZQoaAZHQJ2uaCcwxnFoB03oA2gIR0CoQ9xG2CumdX2UKGgGR0CX7diwjdHlaAdN6ANoCEdAqEVWnTAnD3V9lChoBkdAl5KNa+vhZWgHTegDaAhHQKhLdsJpnHx1fZQoaAZHQJZL42OyVwBoB03oA2gIR0CoTN5oGpuNdX2UKGgGR0CXMgazeGfxaAdN6ANoCEdAqFB0BwMpgHV9lChoBkdAks9r9ycTamgHTegDaAhHQKhR61PWQOp1fZQoaAZHQJhKIDgZTAFoB03oA2gIR0CoV//bj94vdX2UKGgGR0CZx4ML4N7TaAdN6ANoCEdAqFlrlgc94nV9lChoBkdAmkKeNkvsaGgHTegDaAhHQKhc8p3os7N1fZQoaAZHQJjojgGbCrNoB03oA2gIR0CoXnOFHrhSdX2UKGgGR0Cbs/3F1jiGaAdN6ANoCEdAqGSLKmsNlXV9lChoBkdAmZ+y7TUiIWgHTegDaAhHQKhl4WEbo8p1fZQoaAZHQJdYHryDqW1oB03oA2gIR0CoaWWtU4rCdX2UKGgGR0CZGa13+uNhaAdN6ANoCEdAqGrmtGNJe3V9lChoBkdAlJsPvnbItGgHTegDaAhHQKhxC4iHIp91fZQoaAZHQJpiw4dZJTVoB03oA2gIR0CocmdcbBGhdX2UKGgGR0CZ954Z/CqIaAdN6ANoCEdAqHYpBHCoCXV9lChoBkdAlFvdORDCxmgHTegDaAhHQKh3uBnSOR11fZQoaAZHQJJsocOskptoB03oA2gIR0Cofd5y2hIwdX2UKGgGR0CbiMX5FgDzaAdN6ANoCEdAqH8zmSyMUHV9lChoBkdAi3A0PhAGCGgHTegDaAhHQKiCxm8M/hV1fZQoaAZHQJOHVtJnQIFoB03oA2gIR0CohEDRD1GtdX2UKGgGR0CYkRQVsUItaAdN6ANoCEdAqIqGBg/kenV9lChoBkdAmzMcCtA9m2gHTegDaAhHQKiL6z1schl1fZQoaAZHQIJ5iS3b215oB03oA2gIR0Coj5tGus90dX2UKGgGR0CdKsPP9kz5aAdN6ANoCEdAqJEhnezlcXV9lChoBkdAjXJShi9ZimgHTX0CaAhHQKiUJsMRYih1fZQoaAZHQJ0aFNCZ4OdoB03oA2gIR0Col2UkWykcdX2UKGgGR0Cbaa9qUNayaAdN6ANoCEdAqJyOgg5imXV9lChoBkdAlqVDoEB8yGgHTegDaAhHQKieENMoMKF1fZQoaAZHQJpvR+rlvIhoB03oA2gIR0CooPrVFx4qdX2UKGgGR0CbFlB5X2dvaAdN6ANoCEdAqKQlSbYsd3V9lChoBkdAmNfonndO7GgHTegDaAhHQKipJ7zCk451fZQoaAZHQJxQjX+VC5VoB03oA2gIR0Coqq4m1IAfdX2UKGgGR0CVKmpX6qKhaAdN6ANoCEdAqK2xw84ginV9lChoBkdAlnIAnhKlHmgHTegDaAhHQKixAe6I3zd1fZQoaAZHQI8Y6yOaOPxoB03oA2gIR0CotiLeqJdjdX2UKGgGR0CX0F+QU5+6aAdN6ANoCEdAqLeo0oBq9HV9lChoBkdAl4jRS9/SY2gHTegDaAhHQKi6nJ6IFeR1fZQoaAZHQJoDukGiYb9oB03oA2gIR0Covd+LFXJYdX2UKGgGR0CbHjRGtp22aAdN6ANoCEdAqMK/aJyhjHV9lChoBkdAnFNqij+Jg2gHTegDaAhHQKjEO274BWB1fZQoaAZHQJXxaUW2w3ZoB03oA2gIR0Coxz/CAMDwdX2UKGgGR0CaeVEx7AtWaAdN6ANoCEdAqMplA3T/hnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (974 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1690.7569557568727, "std_reward": 243.9449598579349, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-23T15:41:56.133238"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9449125ae44341777bfc38531ebd177216f38729175d900e8b7c9713f9ab021
|
3 |
+
size 2763
|