--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: github_issues-dataset-distilbert-base-uncased results: [] datasets: - lewtun/github-issues language: - en --- # github_issues-dataset-distilbert-base-uncased This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on a GitHub issues dataset. It achieves the following results on the evaluation set: - Loss: 0.1495 - Accuracy: 0.9580 - F1: 0.6067 - Precision: 0.7297 - Recall: 0.5192 ## Model description [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) ## Intended uses & limitations Multi Label Classification on GitHub repository issues. ## Training and evaluation data GitHub issues dataset taken from [GitHub issues](https://huggingface.co/datasets/lewtun/github-issues). Split the dataset into 80-20 train-test splits. Filtered out the pull requests and issues with no labels. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.3962 | 1.0 | 114 | 0.2513 | 0.9208 | 0.34 | 0.3542 | 0.3269 | | 0.2008 | 2.0 | 228 | 0.1847 | 0.9436 | 0.4198 | 0.5862 | 0.3269 | | 0.1633 | 3.0 | 342 | 0.1608 | 0.9544 | 0.5581 | 0.7059 | 0.4615 | | 0.1468 | 4.0 | 456 | 0.1519 | 0.9580 | 0.6067 | 0.7297 | 0.5192 | | 0.1385 | 5.0 | 570 | 0.1495 | 0.9580 | 0.6067 | 0.7297 | 0.5192 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1