File size: 7,041 Bytes
d21fe82
 
 
 
7986c4c
d21fe82
 
 
 
7986c4c
 
d21fe82
 
 
 
 
 
 
 
 
 
 
7986c4c
d21fe82
 
 
 
 
 
7986c4c
d21fe82
7986c4c
 
d21fe82
 
7986c4c
d21fe82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
---
license: llama3
library_name: peft
tags:
- alignment-handbook
- trl
- orpo
- generated_from_trainer
base_model: meta-llama/Meta-Llama-3-8B-Instruct
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: Meta-Llama-3-8B-Instruct-ORPO-QLoRA
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/statking/huggingface/runs/5h649ptl)
# Meta-Llama-3-8B-Instruct-ORPO-QLoRA

This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5734
- Rewards/chosen: -0.0085
- Rewards/rejected: -0.0105
- Rewards/accuracies: 0.6070
- Rewards/margins: 0.0020
- Logps/rejected: -1.0492
- Logps/chosen: -0.8470
- Logits/rejected: -0.2321
- Logits/chosen: -0.2275
- Nll Loss: 0.5669
- Log Odds Ratio: -0.6615
- Log Odds Chosen: 0.3163

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7e-06
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | Log Odds Ratio | Log Odds Chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:--------------:|:---------------:|
| 0.8633        | 0.0524 | 100  | 0.7181          | -0.0135        | -0.0158          | 0.6060             | 0.0023          | -1.5779        | -1.3476      | -0.4503         | -0.4466       | 0.7126   | -0.6965        | 0.2913          |
| 0.7831        | 0.1048 | 200  | 0.6487          | -0.0105        | -0.0125          | 0.6140             | 0.0020          | -1.2499        | -1.0520      | -0.3621         | -0.3619       | 0.6432   | -0.6627        | 0.2691          |
| 0.7146        | 0.1572 | 300  | 0.6238          | -0.0102        | -0.0122          | 0.6140             | 0.0020          | -1.2194        | -1.0173      | -0.3196         | -0.3169       | 0.6181   | -0.6594        | 0.2790          |
| 0.7361        | 0.2096 | 400  | 0.6137          | -0.0100        | -0.0120          | 0.6140             | 0.0020          | -1.2012        | -1.0014      | -0.2841         | -0.2811       | 0.6078   | -0.6618        | 0.2770          |
| 0.7382        | 0.2620 | 500  | 0.6066          | -0.0099        | -0.0119          | 0.6120             | 0.0020          | -1.1884        | -0.9868      | -0.3023         | -0.2982       | 0.6006   | -0.6603        | 0.2812          |
| 0.7339        | 0.3143 | 600  | 0.6009          | -0.0097        | -0.0118          | 0.6100             | 0.0020          | -1.1751        | -0.9714      | -0.2544         | -0.2490       | 0.5948   | -0.6587        | 0.2859          |
| 0.7133        | 0.3667 | 700  | 0.5968          | -0.0096        | -0.0116          | 0.6070             | 0.0020          | -1.1590        | -0.9588      | -0.2830         | -0.2764       | 0.5906   | -0.6590        | 0.2828          |
| 0.6988        | 0.4191 | 800  | 0.5926          | -0.0095        | -0.0115          | 0.6070             | 0.0020          | -1.1491        | -0.9451      | -0.2817         | -0.2745       | 0.5864   | -0.6576        | 0.2898          |
| 0.7493        | 0.4715 | 900  | 0.5882          | -0.0093        | -0.0114          | 0.6080             | 0.0021          | -1.1357        | -0.9301      | -0.2547         | -0.2476       | 0.5820   | -0.6552        | 0.2952          |
| 0.7022        | 0.5239 | 1000 | 0.5842          | -0.0091        | -0.0111          | 0.6070             | 0.0020          | -1.1110        | -0.9090      | -0.2588         | -0.2514       | 0.5780   | -0.6569        | 0.2962          |
| 0.6805        | 0.5763 | 1100 | 0.5807          | -0.0089        | -0.0108          | 0.6020             | 0.0020          | -1.0833        | -0.8865      | -0.2590         | -0.2519       | 0.5744   | -0.6608        | 0.2937          |
| 0.6427        | 0.6287 | 1200 | 0.5780          | -0.0087        | -0.0107          | 0.6070             | 0.0020          | -1.0670        | -0.8682      | -0.2483         | -0.2430       | 0.5717   | -0.6609        | 0.3024          |
| 0.6762        | 0.6811 | 1300 | 0.5762          | -0.0086        | -0.0106          | 0.6070             | 0.0020          | -1.0576        | -0.8586      | -0.2376         | -0.2322       | 0.5698   | -0.6618        | 0.3069          |
| 0.6944        | 0.7335 | 1400 | 0.5750          | -0.0085        | -0.0105          | 0.6070             | 0.0020          | -1.0548        | -0.8542      | -0.2468         | -0.2420       | 0.5686   | -0.6609        | 0.3102          |
| 0.6695        | 0.7859 | 1500 | 0.5742          | -0.0085        | -0.0105          | 0.6080             | 0.0020          | -1.0505        | -0.8493      | -0.2426         | -0.2372       | 0.5678   | -0.6616        | 0.3135          |
| 0.7258        | 0.8382 | 1600 | 0.5738          | -0.0085        | -0.0105          | 0.6080             | 0.0020          | -1.0497        | -0.8485      | -0.2418         | -0.2371       | 0.5673   | -0.6619        | 0.3140          |
| 0.7193        | 0.8906 | 1700 | 0.5735          | -0.0085        | -0.0105          | 0.6050             | 0.0020          | -1.0499        | -0.8477      | -0.2403         | -0.2352       | 0.5671   | -0.6610        | 0.3162          |
| 0.7038        | 0.9430 | 1800 | 0.5734          | -0.0085        | -0.0105          | 0.6090             | 0.0020          | -1.0493        | -0.8471      | -0.2360         | -0.2311       | 0.5670   | -0.6615        | 0.3164          |
| 0.6723        | 0.9954 | 1900 | 0.5734          | -0.0085        | -0.0105          | 0.6070             | 0.0020          | -1.0493        | -0.8470      | -0.2369         | -0.2320       | 0.5669   | -0.6615        | 0.3168          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1