--- library_name: transformers license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer metrics: - wer model-index: - name: local_fr results: [] --- # local_fr This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4986 - Model Preparation Time: 0.0006 - Wer: 75.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:----:| | 1.9152 | 5.0 | 5 | 2.4986 | 0.0006 | 75.0 | | 1.7317 | 10.0 | 10 | 2.4449 | 0.0006 | 75.0 | | 1.4026 | 15.0 | 15 | 2.3783 | 0.0006 | 85.0 | | 1.0429 | 20.0 | 20 | 2.3206 | 0.0006 | 90.0 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1 - Datasets 3.2.0 - Tokenizers 0.20.3