--- library_name: transformers tags: - medical datasets: - stefan-m-lenz/ICDOPS-QA-2024 language: - de base_model: - Qwen/Qwen2.5-7B-Instruct-1M --- # Model Card for Model stefan-m-lenz/Qwen2.5-7B-Instruct This model is a PEFT adapter (e.g., LoRA) fine-tuned using the dataset [ICDOPS-QA-2024](https://huggingface.co/datasets/stefan-m-lenz/ICDOPS-QA-2024) based on [Qwen/Qwen2.5-7B-Instruct-1M](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct-1M). For more information about the training, see the [dataset card](https://huggingface.co/datasets/stefan-m-lenz/ICDOPS-QA-2024). # Usage Package prerequisites: ``` pip install transformers accelerate peft ``` Load the model. ```{python} repo_id = "stefan-m-lenz/Qwen-2.5-7B-ICDOPS-QA-2024" config = PeftConfig.from_pretrained(repo_id, device_map="auto") model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, device_map="auto") model = PeftModel.from_pretrained(model, repo_id, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path, device_map="auto") ``` ```{python} # Test input test_input = """Was ist der ICD-10-Code für die Tumordiagnose „Bronchialkarzinom, Hauptbronchus“? Antworte nur kurz mit dem ICD-10 Code.""" # Generate response inputs = tokenizer(test_input, return_tensors="pt").to("cuda") outputs = model.generate( **inputs, max_new_tokens=7, do_sample=False, pad_token_id=tokenizer.eos_token_id, temperature=None, top_p=None, top_k=None, ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) response = response[len(test_input):].strip() print("Test Input:", test_input) print("Model Response:", response) ```