Stewart Slocum commited on
Commit
3b5b519
·
1 Parent(s): 285ba7e

Add fine-tuned model

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen3-32B
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.1
adapter_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen3-32B",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 128,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.0,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 64,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "o_proj",
28
+ "gate_proj",
29
+ "down_proj",
30
+ "k_proj",
31
+ "up_proj",
32
+ "v_proj",
33
+ "q_proj"
34
+ ],
35
+ "task_type": "CAUSAL_LM",
36
+ "trainable_token_indices": null,
37
+ "use_dora": false,
38
+ "use_rslora": false
39
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e86a3b0bcfd1d266a164fde3807851aa1c7ca38a34d713b09b0c2aef328df52c
3
+ size 2147605960
added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:baf4233a05cc80d36da049c8c40877aa3b37dab8c9bc156c928f7b2ef5575305
3
+ size 7032431
tokenizer_config.json ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n\\n' }}\n {%- endif %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0].role == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0].content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if message.content is string %}\n {%- set content = message.content %}\n {%- else %}\n {%- set content = '' %}\n {%- endif %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is string %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in content %}\n {%- set reasoning_content = content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- set content = content.split('</think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if loop.last or (not loop.last and reasoning_content) %}\n {{- '<|im_start|>' + message.role + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n {%- if enable_thinking is defined and enable_thinking is false %}\n {{- '<think>\\n\\n</think>\\n\\n' }}\n {%- endif %}\n{%- endif %}",
231
+ "clean_up_tokenization_spaces": false,
232
+ "eos_token": "<|im_end|>",
233
+ "errors": "replace",
234
+ "extra_special_tokens": {},
235
+ "model_max_length": 131072,
236
+ "pad_token": "<|endoftext|>",
237
+ "padding_side": "right",
238
+ "split_special_tokens": false,
239
+ "tokenizer_class": "Qwen2Tokenizer",
240
+ "unk_token": null
241
+ }
trainer_state.json ADDED
@@ -0,0 +1,1973 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.0,
6
+ "eval_steps": 0,
7
+ "global_step": 277,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0036101083032490976,
14
+ "grad_norm": 0.3906477689743042,
15
+ "learning_rate": 1e-05,
16
+ "loss": 1.9182,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.007220216606498195,
21
+ "grad_norm": 0.3519993722438812,
22
+ "learning_rate": 9.96389891696751e-06,
23
+ "loss": 1.9358,
24
+ "step": 2
25
+ },
26
+ {
27
+ "epoch": 0.010830324909747292,
28
+ "grad_norm": 0.3567596673965454,
29
+ "learning_rate": 9.92779783393502e-06,
30
+ "loss": 1.9406,
31
+ "step": 3
32
+ },
33
+ {
34
+ "epoch": 0.01444043321299639,
35
+ "grad_norm": 0.3570614755153656,
36
+ "learning_rate": 9.891696750902527e-06,
37
+ "loss": 1.968,
38
+ "step": 4
39
+ },
40
+ {
41
+ "epoch": 0.018050541516245487,
42
+ "grad_norm": 0.3784049153327942,
43
+ "learning_rate": 9.855595667870036e-06,
44
+ "loss": 2.0168,
45
+ "step": 5
46
+ },
47
+ {
48
+ "epoch": 0.021660649819494584,
49
+ "grad_norm": 0.3847959041595459,
50
+ "learning_rate": 9.819494584837546e-06,
51
+ "loss": 1.986,
52
+ "step": 6
53
+ },
54
+ {
55
+ "epoch": 0.02527075812274368,
56
+ "grad_norm": 0.3760608434677124,
57
+ "learning_rate": 9.783393501805055e-06,
58
+ "loss": 1.9516,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.02888086642599278,
63
+ "grad_norm": 0.37250036001205444,
64
+ "learning_rate": 9.747292418772564e-06,
65
+ "loss": 1.9348,
66
+ "step": 8
67
+ },
68
+ {
69
+ "epoch": 0.032490974729241874,
70
+ "grad_norm": 0.3846907317638397,
71
+ "learning_rate": 9.711191335740074e-06,
72
+ "loss": 1.9876,
73
+ "step": 9
74
+ },
75
+ {
76
+ "epoch": 0.036101083032490974,
77
+ "grad_norm": 0.3640958070755005,
78
+ "learning_rate": 9.675090252707581e-06,
79
+ "loss": 1.9291,
80
+ "step": 10
81
+ },
82
+ {
83
+ "epoch": 0.039711191335740074,
84
+ "grad_norm": 0.3778209090232849,
85
+ "learning_rate": 9.63898916967509e-06,
86
+ "loss": 1.9379,
87
+ "step": 11
88
+ },
89
+ {
90
+ "epoch": 0.04332129963898917,
91
+ "grad_norm": 0.36218583583831787,
92
+ "learning_rate": 9.6028880866426e-06,
93
+ "loss": 1.8555,
94
+ "step": 12
95
+ },
96
+ {
97
+ "epoch": 0.04693140794223827,
98
+ "grad_norm": 0.3546968698501587,
99
+ "learning_rate": 9.56678700361011e-06,
100
+ "loss": 1.8911,
101
+ "step": 13
102
+ },
103
+ {
104
+ "epoch": 0.05054151624548736,
105
+ "grad_norm": 0.3511410653591156,
106
+ "learning_rate": 9.530685920577619e-06,
107
+ "loss": 1.9053,
108
+ "step": 14
109
+ },
110
+ {
111
+ "epoch": 0.05415162454873646,
112
+ "grad_norm": 0.33460453152656555,
113
+ "learning_rate": 9.494584837545126e-06,
114
+ "loss": 1.8627,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.05776173285198556,
119
+ "grad_norm": 0.32095813751220703,
120
+ "learning_rate": 9.458483754512636e-06,
121
+ "loss": 1.8297,
122
+ "step": 16
123
+ },
124
+ {
125
+ "epoch": 0.061371841155234655,
126
+ "grad_norm": 0.3342079818248749,
127
+ "learning_rate": 9.422382671480145e-06,
128
+ "loss": 1.8696,
129
+ "step": 17
130
+ },
131
+ {
132
+ "epoch": 0.06498194945848375,
133
+ "grad_norm": 0.32120299339294434,
134
+ "learning_rate": 9.386281588447654e-06,
135
+ "loss": 1.8706,
136
+ "step": 18
137
+ },
138
+ {
139
+ "epoch": 0.06859205776173286,
140
+ "grad_norm": 0.31118956208229065,
141
+ "learning_rate": 9.350180505415164e-06,
142
+ "loss": 1.7985,
143
+ "step": 19
144
+ },
145
+ {
146
+ "epoch": 0.07220216606498195,
147
+ "grad_norm": 0.2956632673740387,
148
+ "learning_rate": 9.314079422382673e-06,
149
+ "loss": 1.7707,
150
+ "step": 20
151
+ },
152
+ {
153
+ "epoch": 0.07581227436823104,
154
+ "grad_norm": 0.2815951108932495,
155
+ "learning_rate": 9.27797833935018e-06,
156
+ "loss": 1.7339,
157
+ "step": 21
158
+ },
159
+ {
160
+ "epoch": 0.07942238267148015,
161
+ "grad_norm": 0.28290557861328125,
162
+ "learning_rate": 9.24187725631769e-06,
163
+ "loss": 1.6558,
164
+ "step": 22
165
+ },
166
+ {
167
+ "epoch": 0.08303249097472924,
168
+ "grad_norm": 0.27962252497673035,
169
+ "learning_rate": 9.2057761732852e-06,
170
+ "loss": 1.7184,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.08664259927797834,
175
+ "grad_norm": 0.27955275774002075,
176
+ "learning_rate": 9.169675090252709e-06,
177
+ "loss": 1.7675,
178
+ "step": 24
179
+ },
180
+ {
181
+ "epoch": 0.09025270758122744,
182
+ "grad_norm": 0.2759793698787689,
183
+ "learning_rate": 9.133574007220218e-06,
184
+ "loss": 1.734,
185
+ "step": 25
186
+ },
187
+ {
188
+ "epoch": 0.09386281588447654,
189
+ "grad_norm": 0.28033754229545593,
190
+ "learning_rate": 9.097472924187727e-06,
191
+ "loss": 1.7748,
192
+ "step": 26
193
+ },
194
+ {
195
+ "epoch": 0.09747292418772563,
196
+ "grad_norm": 0.256147563457489,
197
+ "learning_rate": 9.061371841155235e-06,
198
+ "loss": 1.6816,
199
+ "step": 27
200
+ },
201
+ {
202
+ "epoch": 0.10108303249097472,
203
+ "grad_norm": 0.27007734775543213,
204
+ "learning_rate": 9.025270758122744e-06,
205
+ "loss": 1.7365,
206
+ "step": 28
207
+ },
208
+ {
209
+ "epoch": 0.10469314079422383,
210
+ "grad_norm": 0.2629348337650299,
211
+ "learning_rate": 8.989169675090254e-06,
212
+ "loss": 1.7099,
213
+ "step": 29
214
+ },
215
+ {
216
+ "epoch": 0.10830324909747292,
217
+ "grad_norm": 0.25781527161598206,
218
+ "learning_rate": 8.953068592057763e-06,
219
+ "loss": 1.7204,
220
+ "step": 30
221
+ },
222
+ {
223
+ "epoch": 0.11191335740072202,
224
+ "grad_norm": 0.2417600452899933,
225
+ "learning_rate": 8.916967509025272e-06,
226
+ "loss": 1.6436,
227
+ "step": 31
228
+ },
229
+ {
230
+ "epoch": 0.11552346570397112,
231
+ "grad_norm": 0.23298610746860504,
232
+ "learning_rate": 8.88086642599278e-06,
233
+ "loss": 1.641,
234
+ "step": 32
235
+ },
236
+ {
237
+ "epoch": 0.11913357400722022,
238
+ "grad_norm": 0.23679515719413757,
239
+ "learning_rate": 8.84476534296029e-06,
240
+ "loss": 1.5763,
241
+ "step": 33
242
+ },
243
+ {
244
+ "epoch": 0.12274368231046931,
245
+ "grad_norm": 0.21848472952842712,
246
+ "learning_rate": 8.808664259927798e-06,
247
+ "loss": 1.5755,
248
+ "step": 34
249
+ },
250
+ {
251
+ "epoch": 0.1263537906137184,
252
+ "grad_norm": 0.23198264837265015,
253
+ "learning_rate": 8.772563176895308e-06,
254
+ "loss": 1.6221,
255
+ "step": 35
256
+ },
257
+ {
258
+ "epoch": 0.1299638989169675,
259
+ "grad_norm": 0.21725395321846008,
260
+ "learning_rate": 8.736462093862817e-06,
261
+ "loss": 1.5824,
262
+ "step": 36
263
+ },
264
+ {
265
+ "epoch": 0.13357400722021662,
266
+ "grad_norm": 0.2263486683368683,
267
+ "learning_rate": 8.700361010830326e-06,
268
+ "loss": 1.6184,
269
+ "step": 37
270
+ },
271
+ {
272
+ "epoch": 0.1371841155234657,
273
+ "grad_norm": 0.20590148866176605,
274
+ "learning_rate": 8.664259927797834e-06,
275
+ "loss": 1.5394,
276
+ "step": 38
277
+ },
278
+ {
279
+ "epoch": 0.1407942238267148,
280
+ "grad_norm": 0.21113674342632294,
281
+ "learning_rate": 8.628158844765343e-06,
282
+ "loss": 1.5653,
283
+ "step": 39
284
+ },
285
+ {
286
+ "epoch": 0.1444043321299639,
287
+ "grad_norm": 0.213190957903862,
288
+ "learning_rate": 8.592057761732853e-06,
289
+ "loss": 1.5959,
290
+ "step": 40
291
+ },
292
+ {
293
+ "epoch": 0.148014440433213,
294
+ "grad_norm": 0.20210230350494385,
295
+ "learning_rate": 8.55595667870036e-06,
296
+ "loss": 1.5537,
297
+ "step": 41
298
+ },
299
+ {
300
+ "epoch": 0.15162454873646208,
301
+ "grad_norm": 0.20471017062664032,
302
+ "learning_rate": 8.519855595667871e-06,
303
+ "loss": 1.5477,
304
+ "step": 42
305
+ },
306
+ {
307
+ "epoch": 0.1552346570397112,
308
+ "grad_norm": 0.20811660587787628,
309
+ "learning_rate": 8.483754512635379e-06,
310
+ "loss": 1.5716,
311
+ "step": 43
312
+ },
313
+ {
314
+ "epoch": 0.1588447653429603,
315
+ "grad_norm": 0.20271234214305878,
316
+ "learning_rate": 8.447653429602888e-06,
317
+ "loss": 1.4948,
318
+ "step": 44
319
+ },
320
+ {
321
+ "epoch": 0.1624548736462094,
322
+ "grad_norm": 0.19879910349845886,
323
+ "learning_rate": 8.411552346570398e-06,
324
+ "loss": 1.5337,
325
+ "step": 45
326
+ },
327
+ {
328
+ "epoch": 0.16606498194945848,
329
+ "grad_norm": 0.19177211821079254,
330
+ "learning_rate": 8.375451263537907e-06,
331
+ "loss": 1.5071,
332
+ "step": 46
333
+ },
334
+ {
335
+ "epoch": 0.16967509025270758,
336
+ "grad_norm": 0.18728722631931305,
337
+ "learning_rate": 8.339350180505416e-06,
338
+ "loss": 1.4747,
339
+ "step": 47
340
+ },
341
+ {
342
+ "epoch": 0.17328519855595667,
343
+ "grad_norm": 0.184465691447258,
344
+ "learning_rate": 8.303249097472926e-06,
345
+ "loss": 1.4872,
346
+ "step": 48
347
+ },
348
+ {
349
+ "epoch": 0.17689530685920576,
350
+ "grad_norm": 0.1878860741853714,
351
+ "learning_rate": 8.267148014440433e-06,
352
+ "loss": 1.4915,
353
+ "step": 49
354
+ },
355
+ {
356
+ "epoch": 0.18050541516245489,
357
+ "grad_norm": 0.17948439717292786,
358
+ "learning_rate": 8.231046931407943e-06,
359
+ "loss": 1.457,
360
+ "step": 50
361
+ },
362
+ {
363
+ "epoch": 0.18411552346570398,
364
+ "grad_norm": 0.1881982386112213,
365
+ "learning_rate": 8.194945848375452e-06,
366
+ "loss": 1.5306,
367
+ "step": 51
368
+ },
369
+ {
370
+ "epoch": 0.18772563176895307,
371
+ "grad_norm": 0.1812516301870346,
372
+ "learning_rate": 8.158844765342961e-06,
373
+ "loss": 1.4656,
374
+ "step": 52
375
+ },
376
+ {
377
+ "epoch": 0.19133574007220217,
378
+ "grad_norm": 0.1899358183145523,
379
+ "learning_rate": 8.12274368231047e-06,
380
+ "loss": 1.5026,
381
+ "step": 53
382
+ },
383
+ {
384
+ "epoch": 0.19494584837545126,
385
+ "grad_norm": 0.19062337279319763,
386
+ "learning_rate": 8.086642599277978e-06,
387
+ "loss": 1.5199,
388
+ "step": 54
389
+ },
390
+ {
391
+ "epoch": 0.19855595667870035,
392
+ "grad_norm": 0.17869947850704193,
393
+ "learning_rate": 8.050541516245488e-06,
394
+ "loss": 1.4615,
395
+ "step": 55
396
+ },
397
+ {
398
+ "epoch": 0.20216606498194944,
399
+ "grad_norm": 0.1662779450416565,
400
+ "learning_rate": 8.014440433212997e-06,
401
+ "loss": 1.407,
402
+ "step": 56
403
+ },
404
+ {
405
+ "epoch": 0.20577617328519857,
406
+ "grad_norm": 0.16263751685619354,
407
+ "learning_rate": 7.978339350180506e-06,
408
+ "loss": 1.4331,
409
+ "step": 57
410
+ },
411
+ {
412
+ "epoch": 0.20938628158844766,
413
+ "grad_norm": 0.16713976860046387,
414
+ "learning_rate": 7.942238267148014e-06,
415
+ "loss": 1.4132,
416
+ "step": 58
417
+ },
418
+ {
419
+ "epoch": 0.21299638989169675,
420
+ "grad_norm": 0.16685546934604645,
421
+ "learning_rate": 7.906137184115525e-06,
422
+ "loss": 1.3995,
423
+ "step": 59
424
+ },
425
+ {
426
+ "epoch": 0.21660649819494585,
427
+ "grad_norm": 0.16410455107688904,
428
+ "learning_rate": 7.870036101083033e-06,
429
+ "loss": 1.3945,
430
+ "step": 60
431
+ },
432
+ {
433
+ "epoch": 0.22021660649819494,
434
+ "grad_norm": 0.16225995123386383,
435
+ "learning_rate": 7.833935018050542e-06,
436
+ "loss": 1.4028,
437
+ "step": 61
438
+ },
439
+ {
440
+ "epoch": 0.22382671480144403,
441
+ "grad_norm": 0.16148033738136292,
442
+ "learning_rate": 7.797833935018051e-06,
443
+ "loss": 1.3772,
444
+ "step": 62
445
+ },
446
+ {
447
+ "epoch": 0.22743682310469315,
448
+ "grad_norm": 0.15884925425052643,
449
+ "learning_rate": 7.76173285198556e-06,
450
+ "loss": 1.4097,
451
+ "step": 63
452
+ },
453
+ {
454
+ "epoch": 0.23104693140794225,
455
+ "grad_norm": 0.1623513102531433,
456
+ "learning_rate": 7.72563176895307e-06,
457
+ "loss": 1.3961,
458
+ "step": 64
459
+ },
460
+ {
461
+ "epoch": 0.23465703971119134,
462
+ "grad_norm": 0.1528235524892807,
463
+ "learning_rate": 7.68953068592058e-06,
464
+ "loss": 1.3592,
465
+ "step": 65
466
+ },
467
+ {
468
+ "epoch": 0.23826714801444043,
469
+ "grad_norm": 0.15289799869060516,
470
+ "learning_rate": 7.653429602888087e-06,
471
+ "loss": 1.3527,
472
+ "step": 66
473
+ },
474
+ {
475
+ "epoch": 0.24187725631768953,
476
+ "grad_norm": 0.15215268731117249,
477
+ "learning_rate": 7.617328519855596e-06,
478
+ "loss": 1.38,
479
+ "step": 67
480
+ },
481
+ {
482
+ "epoch": 0.24548736462093862,
483
+ "grad_norm": 0.1538216471672058,
484
+ "learning_rate": 7.5812274368231055e-06,
485
+ "loss": 1.3762,
486
+ "step": 68
487
+ },
488
+ {
489
+ "epoch": 0.2490974729241877,
490
+ "grad_norm": 0.16643854975700378,
491
+ "learning_rate": 7.545126353790614e-06,
492
+ "loss": 1.3943,
493
+ "step": 69
494
+ },
495
+ {
496
+ "epoch": 0.2527075812274368,
497
+ "grad_norm": 0.15845303237438202,
498
+ "learning_rate": 7.509025270758123e-06,
499
+ "loss": 1.3404,
500
+ "step": 70
501
+ },
502
+ {
503
+ "epoch": 0.2563176895306859,
504
+ "grad_norm": 0.17033147811889648,
505
+ "learning_rate": 7.472924187725632e-06,
506
+ "loss": 1.3627,
507
+ "step": 71
508
+ },
509
+ {
510
+ "epoch": 0.259927797833935,
511
+ "grad_norm": 0.15227161347866058,
512
+ "learning_rate": 7.436823104693142e-06,
513
+ "loss": 1.356,
514
+ "step": 72
515
+ },
516
+ {
517
+ "epoch": 0.26353790613718414,
518
+ "grad_norm": 0.15400710701942444,
519
+ "learning_rate": 7.40072202166065e-06,
520
+ "loss": 1.3972,
521
+ "step": 73
522
+ },
523
+ {
524
+ "epoch": 0.26714801444043323,
525
+ "grad_norm": 0.15523630380630493,
526
+ "learning_rate": 7.36462093862816e-06,
527
+ "loss": 1.3982,
528
+ "step": 74
529
+ },
530
+ {
531
+ "epoch": 0.27075812274368233,
532
+ "grad_norm": 0.15039947628974915,
533
+ "learning_rate": 7.328519855595668e-06,
534
+ "loss": 1.3633,
535
+ "step": 75
536
+ },
537
+ {
538
+ "epoch": 0.2743682310469314,
539
+ "grad_norm": 0.1486598253250122,
540
+ "learning_rate": 7.2924187725631776e-06,
541
+ "loss": 1.3216,
542
+ "step": 76
543
+ },
544
+ {
545
+ "epoch": 0.2779783393501805,
546
+ "grad_norm": 0.16418850421905518,
547
+ "learning_rate": 7.256317689530686e-06,
548
+ "loss": 1.3835,
549
+ "step": 77
550
+ },
551
+ {
552
+ "epoch": 0.2815884476534296,
553
+ "grad_norm": 0.15706279873847961,
554
+ "learning_rate": 7.220216606498196e-06,
555
+ "loss": 1.3334,
556
+ "step": 78
557
+ },
558
+ {
559
+ "epoch": 0.2851985559566787,
560
+ "grad_norm": 0.16071277856826782,
561
+ "learning_rate": 7.184115523465705e-06,
562
+ "loss": 1.3486,
563
+ "step": 79
564
+ },
565
+ {
566
+ "epoch": 0.2888086642599278,
567
+ "grad_norm": 0.16139793395996094,
568
+ "learning_rate": 7.148014440433214e-06,
569
+ "loss": 1.3422,
570
+ "step": 80
571
+ },
572
+ {
573
+ "epoch": 0.2924187725631769,
574
+ "grad_norm": 0.16803719103336334,
575
+ "learning_rate": 7.1119133574007225e-06,
576
+ "loss": 1.3736,
577
+ "step": 81
578
+ },
579
+ {
580
+ "epoch": 0.296028880866426,
581
+ "grad_norm": 0.16314350068569183,
582
+ "learning_rate": 7.075812274368231e-06,
583
+ "loss": 1.3368,
584
+ "step": 82
585
+ },
586
+ {
587
+ "epoch": 0.2996389891696751,
588
+ "grad_norm": 0.1671237051486969,
589
+ "learning_rate": 7.039711191335741e-06,
590
+ "loss": 1.3911,
591
+ "step": 83
592
+ },
593
+ {
594
+ "epoch": 0.30324909747292417,
595
+ "grad_norm": 0.19697195291519165,
596
+ "learning_rate": 7.00361010830325e-06,
597
+ "loss": 1.341,
598
+ "step": 84
599
+ },
600
+ {
601
+ "epoch": 0.30685920577617326,
602
+ "grad_norm": 0.1465914398431778,
603
+ "learning_rate": 6.967509025270759e-06,
604
+ "loss": 1.3042,
605
+ "step": 85
606
+ },
607
+ {
608
+ "epoch": 0.3104693140794224,
609
+ "grad_norm": 0.16650806367397308,
610
+ "learning_rate": 6.9314079422382674e-06,
611
+ "loss": 1.3408,
612
+ "step": 86
613
+ },
614
+ {
615
+ "epoch": 0.3140794223826715,
616
+ "grad_norm": 0.1581205278635025,
617
+ "learning_rate": 6.895306859205777e-06,
618
+ "loss": 1.329,
619
+ "step": 87
620
+ },
621
+ {
622
+ "epoch": 0.3176895306859206,
623
+ "grad_norm": 0.15426112711429596,
624
+ "learning_rate": 6.859205776173285e-06,
625
+ "loss": 1.2592,
626
+ "step": 88
627
+ },
628
+ {
629
+ "epoch": 0.3212996389891697,
630
+ "grad_norm": 0.16004693508148193,
631
+ "learning_rate": 6.8231046931407954e-06,
632
+ "loss": 1.3038,
633
+ "step": 89
634
+ },
635
+ {
636
+ "epoch": 0.3249097472924188,
637
+ "grad_norm": 0.15763762593269348,
638
+ "learning_rate": 6.787003610108304e-06,
639
+ "loss": 1.2795,
640
+ "step": 90
641
+ },
642
+ {
643
+ "epoch": 0.3285198555956679,
644
+ "grad_norm": 0.149816632270813,
645
+ "learning_rate": 6.750902527075813e-06,
646
+ "loss": 1.3102,
647
+ "step": 91
648
+ },
649
+ {
650
+ "epoch": 0.33212996389891697,
651
+ "grad_norm": 0.17016269266605377,
652
+ "learning_rate": 6.714801444043322e-06,
653
+ "loss": 1.2814,
654
+ "step": 92
655
+ },
656
+ {
657
+ "epoch": 0.33574007220216606,
658
+ "grad_norm": 0.1583528071641922,
659
+ "learning_rate": 6.678700361010831e-06,
660
+ "loss": 1.3119,
661
+ "step": 93
662
+ },
663
+ {
664
+ "epoch": 0.33935018050541516,
665
+ "grad_norm": 0.16154561936855316,
666
+ "learning_rate": 6.6425992779783395e-06,
667
+ "loss": 1.2831,
668
+ "step": 94
669
+ },
670
+ {
671
+ "epoch": 0.34296028880866425,
672
+ "grad_norm": 0.16628222167491913,
673
+ "learning_rate": 6.606498194945848e-06,
674
+ "loss": 1.3195,
675
+ "step": 95
676
+ },
677
+ {
678
+ "epoch": 0.34657039711191334,
679
+ "grad_norm": 0.17518571019172668,
680
+ "learning_rate": 6.570397111913358e-06,
681
+ "loss": 1.3072,
682
+ "step": 96
683
+ },
684
+ {
685
+ "epoch": 0.35018050541516244,
686
+ "grad_norm": 0.16380861401557922,
687
+ "learning_rate": 6.534296028880867e-06,
688
+ "loss": 1.2972,
689
+ "step": 97
690
+ },
691
+ {
692
+ "epoch": 0.35379061371841153,
693
+ "grad_norm": 0.15697072446346283,
694
+ "learning_rate": 6.498194945848376e-06,
695
+ "loss": 1.2587,
696
+ "step": 98
697
+ },
698
+ {
699
+ "epoch": 0.3574007220216607,
700
+ "grad_norm": 0.1633334457874298,
701
+ "learning_rate": 6.4620938628158845e-06,
702
+ "loss": 1.3015,
703
+ "step": 99
704
+ },
705
+ {
706
+ "epoch": 0.36101083032490977,
707
+ "grad_norm": 0.16620321571826935,
708
+ "learning_rate": 6.425992779783395e-06,
709
+ "loss": 1.2815,
710
+ "step": 100
711
+ },
712
+ {
713
+ "epoch": 0.36462093862815886,
714
+ "grad_norm": 0.16476577520370483,
715
+ "learning_rate": 6.389891696750903e-06,
716
+ "loss": 1.2897,
717
+ "step": 101
718
+ },
719
+ {
720
+ "epoch": 0.36823104693140796,
721
+ "grad_norm": 0.167822003364563,
722
+ "learning_rate": 6.3537906137184125e-06,
723
+ "loss": 1.2956,
724
+ "step": 102
725
+ },
726
+ {
727
+ "epoch": 0.37184115523465705,
728
+ "grad_norm": 0.18422123789787292,
729
+ "learning_rate": 6.317689530685921e-06,
730
+ "loss": 1.3462,
731
+ "step": 103
732
+ },
733
+ {
734
+ "epoch": 0.37545126353790614,
735
+ "grad_norm": 0.2341340035200119,
736
+ "learning_rate": 6.28158844765343e-06,
737
+ "loss": 1.3252,
738
+ "step": 104
739
+ },
740
+ {
741
+ "epoch": 0.37906137184115524,
742
+ "grad_norm": 0.17908398807048798,
743
+ "learning_rate": 6.245487364620939e-06,
744
+ "loss": 1.2882,
745
+ "step": 105
746
+ },
747
+ {
748
+ "epoch": 0.38267148014440433,
749
+ "grad_norm": 0.19902288913726807,
750
+ "learning_rate": 6.209386281588449e-06,
751
+ "loss": 1.2835,
752
+ "step": 106
753
+ },
754
+ {
755
+ "epoch": 0.3862815884476534,
756
+ "grad_norm": 0.1740066558122635,
757
+ "learning_rate": 6.173285198555957e-06,
758
+ "loss": 1.2816,
759
+ "step": 107
760
+ },
761
+ {
762
+ "epoch": 0.3898916967509025,
763
+ "grad_norm": 0.17557938396930695,
764
+ "learning_rate": 6.137184115523466e-06,
765
+ "loss": 1.2634,
766
+ "step": 108
767
+ },
768
+ {
769
+ "epoch": 0.3935018050541516,
770
+ "grad_norm": 0.1751922369003296,
771
+ "learning_rate": 6.101083032490975e-06,
772
+ "loss": 1.2434,
773
+ "step": 109
774
+ },
775
+ {
776
+ "epoch": 0.3971119133574007,
777
+ "grad_norm": 0.1811022162437439,
778
+ "learning_rate": 6.064981949458484e-06,
779
+ "loss": 1.239,
780
+ "step": 110
781
+ },
782
+ {
783
+ "epoch": 0.4007220216606498,
784
+ "grad_norm": 0.17364069819450378,
785
+ "learning_rate": 6.028880866425994e-06,
786
+ "loss": 1.2811,
787
+ "step": 111
788
+ },
789
+ {
790
+ "epoch": 0.4043321299638989,
791
+ "grad_norm": 0.17428967356681824,
792
+ "learning_rate": 5.992779783393502e-06,
793
+ "loss": 1.2463,
794
+ "step": 112
795
+ },
796
+ {
797
+ "epoch": 0.40794223826714804,
798
+ "grad_norm": 0.17993202805519104,
799
+ "learning_rate": 5.956678700361012e-06,
800
+ "loss": 1.276,
801
+ "step": 113
802
+ },
803
+ {
804
+ "epoch": 0.41155234657039713,
805
+ "grad_norm": 0.18714790046215057,
806
+ "learning_rate": 5.92057761732852e-06,
807
+ "loss": 1.2847,
808
+ "step": 114
809
+ },
810
+ {
811
+ "epoch": 0.4151624548736462,
812
+ "grad_norm": 0.17145384848117828,
813
+ "learning_rate": 5.8844765342960295e-06,
814
+ "loss": 1.2517,
815
+ "step": 115
816
+ },
817
+ {
818
+ "epoch": 0.4187725631768953,
819
+ "grad_norm": 0.17630116641521454,
820
+ "learning_rate": 5.848375451263538e-06,
821
+ "loss": 1.2782,
822
+ "step": 116
823
+ },
824
+ {
825
+ "epoch": 0.4223826714801444,
826
+ "grad_norm": 0.17321041226387024,
827
+ "learning_rate": 5.812274368231048e-06,
828
+ "loss": 1.2579,
829
+ "step": 117
830
+ },
831
+ {
832
+ "epoch": 0.4259927797833935,
833
+ "grad_norm": 0.1654365211725235,
834
+ "learning_rate": 5.776173285198557e-06,
835
+ "loss": 1.2574,
836
+ "step": 118
837
+ },
838
+ {
839
+ "epoch": 0.4296028880866426,
840
+ "grad_norm": 0.17040106654167175,
841
+ "learning_rate": 5.740072202166066e-06,
842
+ "loss": 1.2704,
843
+ "step": 119
844
+ },
845
+ {
846
+ "epoch": 0.4332129963898917,
847
+ "grad_norm": 0.1668238639831543,
848
+ "learning_rate": 5.7039711191335744e-06,
849
+ "loss": 1.2708,
850
+ "step": 120
851
+ },
852
+ {
853
+ "epoch": 0.4368231046931408,
854
+ "grad_norm": 0.1759078949689865,
855
+ "learning_rate": 5.667870036101083e-06,
856
+ "loss": 1.2453,
857
+ "step": 121
858
+ },
859
+ {
860
+ "epoch": 0.4404332129963899,
861
+ "grad_norm": 0.1757153868675232,
862
+ "learning_rate": 5.631768953068592e-06,
863
+ "loss": 1.2802,
864
+ "step": 122
865
+ },
866
+ {
867
+ "epoch": 0.44404332129963897,
868
+ "grad_norm": 0.16132718324661255,
869
+ "learning_rate": 5.595667870036101e-06,
870
+ "loss": 1.211,
871
+ "step": 123
872
+ },
873
+ {
874
+ "epoch": 0.44765342960288806,
875
+ "grad_norm": 0.17060841619968414,
876
+ "learning_rate": 5.559566787003611e-06,
877
+ "loss": 1.2678,
878
+ "step": 124
879
+ },
880
+ {
881
+ "epoch": 0.45126353790613716,
882
+ "grad_norm": 0.18571889400482178,
883
+ "learning_rate": 5.523465703971119e-06,
884
+ "loss": 1.2374,
885
+ "step": 125
886
+ },
887
+ {
888
+ "epoch": 0.4548736462093863,
889
+ "grad_norm": 0.18377730250358582,
890
+ "learning_rate": 5.487364620938629e-06,
891
+ "loss": 1.2539,
892
+ "step": 126
893
+ },
894
+ {
895
+ "epoch": 0.4584837545126354,
896
+ "grad_norm": 0.17528033256530762,
897
+ "learning_rate": 5.451263537906137e-06,
898
+ "loss": 1.2652,
899
+ "step": 127
900
+ },
901
+ {
902
+ "epoch": 0.4620938628158845,
903
+ "grad_norm": 0.18861664831638336,
904
+ "learning_rate": 5.415162454873647e-06,
905
+ "loss": 1.2763,
906
+ "step": 128
907
+ },
908
+ {
909
+ "epoch": 0.4657039711191336,
910
+ "grad_norm": 0.17218445241451263,
911
+ "learning_rate": 5.379061371841156e-06,
912
+ "loss": 1.2178,
913
+ "step": 129
914
+ },
915
+ {
916
+ "epoch": 0.4693140794223827,
917
+ "grad_norm": 0.18088595569133759,
918
+ "learning_rate": 5.342960288808665e-06,
919
+ "loss": 1.262,
920
+ "step": 130
921
+ },
922
+ {
923
+ "epoch": 0.4729241877256318,
924
+ "grad_norm": 0.17093537747859955,
925
+ "learning_rate": 5.306859205776174e-06,
926
+ "loss": 1.2601,
927
+ "step": 131
928
+ },
929
+ {
930
+ "epoch": 0.47653429602888087,
931
+ "grad_norm": 0.18387606739997864,
932
+ "learning_rate": 5.270758122743683e-06,
933
+ "loss": 1.2642,
934
+ "step": 132
935
+ },
936
+ {
937
+ "epoch": 0.48014440433212996,
938
+ "grad_norm": 0.1783597320318222,
939
+ "learning_rate": 5.2346570397111915e-06,
940
+ "loss": 1.2853,
941
+ "step": 133
942
+ },
943
+ {
944
+ "epoch": 0.48375451263537905,
945
+ "grad_norm": 0.1952812671661377,
946
+ "learning_rate": 5.1985559566787e-06,
947
+ "loss": 1.2598,
948
+ "step": 134
949
+ },
950
+ {
951
+ "epoch": 0.48736462093862815,
952
+ "grad_norm": 0.18684479594230652,
953
+ "learning_rate": 5.16245487364621e-06,
954
+ "loss": 1.2376,
955
+ "step": 135
956
+ },
957
+ {
958
+ "epoch": 0.49097472924187724,
959
+ "grad_norm": 0.1714159995317459,
960
+ "learning_rate": 5.126353790613719e-06,
961
+ "loss": 1.2428,
962
+ "step": 136
963
+ },
964
+ {
965
+ "epoch": 0.49458483754512633,
966
+ "grad_norm": 0.17785212397575378,
967
+ "learning_rate": 5.090252707581228e-06,
968
+ "loss": 1.2578,
969
+ "step": 137
970
+ },
971
+ {
972
+ "epoch": 0.4981949458483754,
973
+ "grad_norm": 0.16379688680171967,
974
+ "learning_rate": 5.054151624548736e-06,
975
+ "loss": 1.2169,
976
+ "step": 138
977
+ },
978
+ {
979
+ "epoch": 0.5018050541516246,
980
+ "grad_norm": 0.18399930000305176,
981
+ "learning_rate": 5.018050541516246e-06,
982
+ "loss": 1.2387,
983
+ "step": 139
984
+ },
985
+ {
986
+ "epoch": 0.5054151624548736,
987
+ "grad_norm": 0.16738887131214142,
988
+ "learning_rate": 4.981949458483755e-06,
989
+ "loss": 1.1984,
990
+ "step": 140
991
+ },
992
+ {
993
+ "epoch": 0.5090252707581228,
994
+ "grad_norm": 0.16900669038295746,
995
+ "learning_rate": 4.9458483754512636e-06,
996
+ "loss": 1.2247,
997
+ "step": 141
998
+ },
999
+ {
1000
+ "epoch": 0.5126353790613718,
1001
+ "grad_norm": 0.1783466935157776,
1002
+ "learning_rate": 4.909747292418773e-06,
1003
+ "loss": 1.2208,
1004
+ "step": 142
1005
+ },
1006
+ {
1007
+ "epoch": 0.516245487364621,
1008
+ "grad_norm": 0.17312617599964142,
1009
+ "learning_rate": 4.873646209386282e-06,
1010
+ "loss": 1.2581,
1011
+ "step": 143
1012
+ },
1013
+ {
1014
+ "epoch": 0.51985559566787,
1015
+ "grad_norm": 0.1700895130634308,
1016
+ "learning_rate": 4.837545126353791e-06,
1017
+ "loss": 1.2053,
1018
+ "step": 144
1019
+ },
1020
+ {
1021
+ "epoch": 0.5234657039711191,
1022
+ "grad_norm": 0.1777171492576599,
1023
+ "learning_rate": 4.8014440433213e-06,
1024
+ "loss": 1.2226,
1025
+ "step": 145
1026
+ },
1027
+ {
1028
+ "epoch": 0.5270758122743683,
1029
+ "grad_norm": 0.18953363597393036,
1030
+ "learning_rate": 4.765342960288809e-06,
1031
+ "loss": 1.2466,
1032
+ "step": 146
1033
+ },
1034
+ {
1035
+ "epoch": 0.5306859205776173,
1036
+ "grad_norm": 0.17339888215065002,
1037
+ "learning_rate": 4.729241877256318e-06,
1038
+ "loss": 1.2149,
1039
+ "step": 147
1040
+ },
1041
+ {
1042
+ "epoch": 0.5342960288808665,
1043
+ "grad_norm": 0.19073906540870667,
1044
+ "learning_rate": 4.693140794223827e-06,
1045
+ "loss": 1.2007,
1046
+ "step": 148
1047
+ },
1048
+ {
1049
+ "epoch": 0.5379061371841155,
1050
+ "grad_norm": 0.16880060732364655,
1051
+ "learning_rate": 4.6570397111913365e-06,
1052
+ "loss": 1.2227,
1053
+ "step": 149
1054
+ },
1055
+ {
1056
+ "epoch": 0.5415162454873647,
1057
+ "grad_norm": 0.16424672305583954,
1058
+ "learning_rate": 4.620938628158845e-06,
1059
+ "loss": 1.1705,
1060
+ "step": 150
1061
+ },
1062
+ {
1063
+ "epoch": 0.5451263537906137,
1064
+ "grad_norm": 0.16801835596561432,
1065
+ "learning_rate": 4.584837545126354e-06,
1066
+ "loss": 1.2057,
1067
+ "step": 151
1068
+ },
1069
+ {
1070
+ "epoch": 0.5487364620938628,
1071
+ "grad_norm": 0.1562417894601822,
1072
+ "learning_rate": 4.548736462093864e-06,
1073
+ "loss": 1.2128,
1074
+ "step": 152
1075
+ },
1076
+ {
1077
+ "epoch": 0.5523465703971119,
1078
+ "grad_norm": 0.16783113777637482,
1079
+ "learning_rate": 4.512635379061372e-06,
1080
+ "loss": 1.2268,
1081
+ "step": 153
1082
+ },
1083
+ {
1084
+ "epoch": 0.555956678700361,
1085
+ "grad_norm": 0.16385634243488312,
1086
+ "learning_rate": 4.4765342960288814e-06,
1087
+ "loss": 1.231,
1088
+ "step": 154
1089
+ },
1090
+ {
1091
+ "epoch": 0.5595667870036101,
1092
+ "grad_norm": 0.17842411994934082,
1093
+ "learning_rate": 4.44043321299639e-06,
1094
+ "loss": 1.2298,
1095
+ "step": 155
1096
+ },
1097
+ {
1098
+ "epoch": 0.5631768953068592,
1099
+ "grad_norm": 0.1686694622039795,
1100
+ "learning_rate": 4.404332129963899e-06,
1101
+ "loss": 1.1869,
1102
+ "step": 156
1103
+ },
1104
+ {
1105
+ "epoch": 0.5667870036101083,
1106
+ "grad_norm": 0.16224338114261627,
1107
+ "learning_rate": 4.3682310469314086e-06,
1108
+ "loss": 1.2195,
1109
+ "step": 157
1110
+ },
1111
+ {
1112
+ "epoch": 0.5703971119133574,
1113
+ "grad_norm": 0.17732633650302887,
1114
+ "learning_rate": 4.332129963898917e-06,
1115
+ "loss": 1.2523,
1116
+ "step": 158
1117
+ },
1118
+ {
1119
+ "epoch": 0.5740072202166066,
1120
+ "grad_norm": 0.17926734685897827,
1121
+ "learning_rate": 4.296028880866426e-06,
1122
+ "loss": 1.2714,
1123
+ "step": 159
1124
+ },
1125
+ {
1126
+ "epoch": 0.5776173285198556,
1127
+ "grad_norm": 0.17063374817371368,
1128
+ "learning_rate": 4.259927797833936e-06,
1129
+ "loss": 1.1782,
1130
+ "step": 160
1131
+ },
1132
+ {
1133
+ "epoch": 0.5812274368231047,
1134
+ "grad_norm": 0.1755475252866745,
1135
+ "learning_rate": 4.223826714801444e-06,
1136
+ "loss": 1.2627,
1137
+ "step": 161
1138
+ },
1139
+ {
1140
+ "epoch": 0.5848375451263538,
1141
+ "grad_norm": 0.16701039671897888,
1142
+ "learning_rate": 4.1877256317689535e-06,
1143
+ "loss": 1.2063,
1144
+ "step": 162
1145
+ },
1146
+ {
1147
+ "epoch": 0.5884476534296029,
1148
+ "grad_norm": 0.16265147924423218,
1149
+ "learning_rate": 4.151624548736463e-06,
1150
+ "loss": 1.2059,
1151
+ "step": 163
1152
+ },
1153
+ {
1154
+ "epoch": 0.592057761732852,
1155
+ "grad_norm": 0.1786644607782364,
1156
+ "learning_rate": 4.115523465703971e-06,
1157
+ "loss": 1.2348,
1158
+ "step": 164
1159
+ },
1160
+ {
1161
+ "epoch": 0.5956678700361011,
1162
+ "grad_norm": 0.17144908010959625,
1163
+ "learning_rate": 4.079422382671481e-06,
1164
+ "loss": 1.2047,
1165
+ "step": 165
1166
+ },
1167
+ {
1168
+ "epoch": 0.5992779783393501,
1169
+ "grad_norm": 0.162446066737175,
1170
+ "learning_rate": 4.043321299638989e-06,
1171
+ "loss": 1.1444,
1172
+ "step": 166
1173
+ },
1174
+ {
1175
+ "epoch": 0.6028880866425993,
1176
+ "grad_norm": 0.16856145858764648,
1177
+ "learning_rate": 4.0072202166064985e-06,
1178
+ "loss": 1.2124,
1179
+ "step": 167
1180
+ },
1181
+ {
1182
+ "epoch": 0.6064981949458483,
1183
+ "grad_norm": 0.16155439615249634,
1184
+ "learning_rate": 3.971119133574007e-06,
1185
+ "loss": 1.1972,
1186
+ "step": 168
1187
+ },
1188
+ {
1189
+ "epoch": 0.6101083032490975,
1190
+ "grad_norm": 0.16953597962856293,
1191
+ "learning_rate": 3.935018050541516e-06,
1192
+ "loss": 1.1857,
1193
+ "step": 169
1194
+ },
1195
+ {
1196
+ "epoch": 0.6137184115523465,
1197
+ "grad_norm": 0.16179132461547852,
1198
+ "learning_rate": 3.898916967509026e-06,
1199
+ "loss": 1.215,
1200
+ "step": 170
1201
+ },
1202
+ {
1203
+ "epoch": 0.6173285198555957,
1204
+ "grad_norm": 0.16425742208957672,
1205
+ "learning_rate": 3.862815884476535e-06,
1206
+ "loss": 1.1782,
1207
+ "step": 171
1208
+ },
1209
+ {
1210
+ "epoch": 0.6209386281588448,
1211
+ "grad_norm": 0.16945868730545044,
1212
+ "learning_rate": 3.826714801444043e-06,
1213
+ "loss": 1.1688,
1214
+ "step": 172
1215
+ },
1216
+ {
1217
+ "epoch": 0.6245487364620939,
1218
+ "grad_norm": 0.15789610147476196,
1219
+ "learning_rate": 3.7906137184115527e-06,
1220
+ "loss": 1.2014,
1221
+ "step": 173
1222
+ },
1223
+ {
1224
+ "epoch": 0.628158844765343,
1225
+ "grad_norm": 0.16432178020477295,
1226
+ "learning_rate": 3.7545126353790616e-06,
1227
+ "loss": 1.1759,
1228
+ "step": 174
1229
+ },
1230
+ {
1231
+ "epoch": 0.631768953068592,
1232
+ "grad_norm": 0.17914260923862457,
1233
+ "learning_rate": 3.718411552346571e-06,
1234
+ "loss": 1.2136,
1235
+ "step": 175
1236
+ },
1237
+ {
1238
+ "epoch": 0.6353790613718412,
1239
+ "grad_norm": 0.16468694806098938,
1240
+ "learning_rate": 3.68231046931408e-06,
1241
+ "loss": 1.226,
1242
+ "step": 176
1243
+ },
1244
+ {
1245
+ "epoch": 0.6389891696750902,
1246
+ "grad_norm": 0.1653434932231903,
1247
+ "learning_rate": 3.6462093862815888e-06,
1248
+ "loss": 1.1727,
1249
+ "step": 177
1250
+ },
1251
+ {
1252
+ "epoch": 0.6425992779783394,
1253
+ "grad_norm": 0.16112962365150452,
1254
+ "learning_rate": 3.610108303249098e-06,
1255
+ "loss": 1.2053,
1256
+ "step": 178
1257
+ },
1258
+ {
1259
+ "epoch": 0.6462093862815884,
1260
+ "grad_norm": 0.16168227791786194,
1261
+ "learning_rate": 3.574007220216607e-06,
1262
+ "loss": 1.2025,
1263
+ "step": 179
1264
+ },
1265
+ {
1266
+ "epoch": 0.6498194945848376,
1267
+ "grad_norm": 0.18035608530044556,
1268
+ "learning_rate": 3.5379061371841155e-06,
1269
+ "loss": 1.2383,
1270
+ "step": 180
1271
+ },
1272
+ {
1273
+ "epoch": 0.6534296028880866,
1274
+ "grad_norm": 0.15656578540802002,
1275
+ "learning_rate": 3.501805054151625e-06,
1276
+ "loss": 1.1784,
1277
+ "step": 181
1278
+ },
1279
+ {
1280
+ "epoch": 0.6570397111913358,
1281
+ "grad_norm": 0.1679116189479828,
1282
+ "learning_rate": 3.4657039711191337e-06,
1283
+ "loss": 1.2039,
1284
+ "step": 182
1285
+ },
1286
+ {
1287
+ "epoch": 0.6606498194945848,
1288
+ "grad_norm": 0.16150985658168793,
1289
+ "learning_rate": 3.4296028880866426e-06,
1290
+ "loss": 1.2016,
1291
+ "step": 183
1292
+ },
1293
+ {
1294
+ "epoch": 0.6642599277978339,
1295
+ "grad_norm": 0.16296003758907318,
1296
+ "learning_rate": 3.393501805054152e-06,
1297
+ "loss": 1.1905,
1298
+ "step": 184
1299
+ },
1300
+ {
1301
+ "epoch": 0.6678700361010831,
1302
+ "grad_norm": 0.16305354237556458,
1303
+ "learning_rate": 3.357400722021661e-06,
1304
+ "loss": 1.1943,
1305
+ "step": 185
1306
+ },
1307
+ {
1308
+ "epoch": 0.6714801444043321,
1309
+ "grad_norm": 0.1891491562128067,
1310
+ "learning_rate": 3.3212996389891698e-06,
1311
+ "loss": 1.2084,
1312
+ "step": 186
1313
+ },
1314
+ {
1315
+ "epoch": 0.6750902527075813,
1316
+ "grad_norm": 0.15838882327079773,
1317
+ "learning_rate": 3.285198555956679e-06,
1318
+ "loss": 1.2023,
1319
+ "step": 187
1320
+ },
1321
+ {
1322
+ "epoch": 0.6787003610108303,
1323
+ "grad_norm": 0.1793486475944519,
1324
+ "learning_rate": 3.249097472924188e-06,
1325
+ "loss": 1.192,
1326
+ "step": 188
1327
+ },
1328
+ {
1329
+ "epoch": 0.6823104693140795,
1330
+ "grad_norm": 0.15657131373882294,
1331
+ "learning_rate": 3.2129963898916973e-06,
1332
+ "loss": 1.1503,
1333
+ "step": 189
1334
+ },
1335
+ {
1336
+ "epoch": 0.6859205776173285,
1337
+ "grad_norm": 0.15550659596920013,
1338
+ "learning_rate": 3.1768953068592062e-06,
1339
+ "loss": 1.1706,
1340
+ "step": 190
1341
+ },
1342
+ {
1343
+ "epoch": 0.6895306859205776,
1344
+ "grad_norm": 0.14772717654705048,
1345
+ "learning_rate": 3.140794223826715e-06,
1346
+ "loss": 1.1747,
1347
+ "step": 191
1348
+ },
1349
+ {
1350
+ "epoch": 0.6931407942238267,
1351
+ "grad_norm": 0.15000027418136597,
1352
+ "learning_rate": 3.1046931407942245e-06,
1353
+ "loss": 1.1851,
1354
+ "step": 192
1355
+ },
1356
+ {
1357
+ "epoch": 0.6967509025270758,
1358
+ "grad_norm": 0.16249404847621918,
1359
+ "learning_rate": 3.068592057761733e-06,
1360
+ "loss": 1.1818,
1361
+ "step": 193
1362
+ },
1363
+ {
1364
+ "epoch": 0.7003610108303249,
1365
+ "grad_norm": 0.15984781086444855,
1366
+ "learning_rate": 3.032490974729242e-06,
1367
+ "loss": 1.1772,
1368
+ "step": 194
1369
+ },
1370
+ {
1371
+ "epoch": 0.703971119133574,
1372
+ "grad_norm": 0.16228142380714417,
1373
+ "learning_rate": 2.996389891696751e-06,
1374
+ "loss": 1.192,
1375
+ "step": 195
1376
+ },
1377
+ {
1378
+ "epoch": 0.7075812274368231,
1379
+ "grad_norm": 0.15648210048675537,
1380
+ "learning_rate": 2.96028880866426e-06,
1381
+ "loss": 1.1698,
1382
+ "step": 196
1383
+ },
1384
+ {
1385
+ "epoch": 0.7111913357400722,
1386
+ "grad_norm": 0.17055556178092957,
1387
+ "learning_rate": 2.924187725631769e-06,
1388
+ "loss": 1.2087,
1389
+ "step": 197
1390
+ },
1391
+ {
1392
+ "epoch": 0.7148014440433214,
1393
+ "grad_norm": 0.15509968996047974,
1394
+ "learning_rate": 2.8880866425992783e-06,
1395
+ "loss": 1.2179,
1396
+ "step": 198
1397
+ },
1398
+ {
1399
+ "epoch": 0.7184115523465704,
1400
+ "grad_norm": 0.16316714882850647,
1401
+ "learning_rate": 2.8519855595667872e-06,
1402
+ "loss": 1.1972,
1403
+ "step": 199
1404
+ },
1405
+ {
1406
+ "epoch": 0.7220216606498195,
1407
+ "grad_norm": 0.16342194378376007,
1408
+ "learning_rate": 2.815884476534296e-06,
1409
+ "loss": 1.1938,
1410
+ "step": 200
1411
+ },
1412
+ {
1413
+ "epoch": 0.7256317689530686,
1414
+ "grad_norm": 0.15999089181423187,
1415
+ "learning_rate": 2.7797833935018055e-06,
1416
+ "loss": 1.187,
1417
+ "step": 201
1418
+ },
1419
+ {
1420
+ "epoch": 0.7292418772563177,
1421
+ "grad_norm": 0.16154974699020386,
1422
+ "learning_rate": 2.7436823104693144e-06,
1423
+ "loss": 1.1564,
1424
+ "step": 202
1425
+ },
1426
+ {
1427
+ "epoch": 0.7328519855595668,
1428
+ "grad_norm": 0.1517033874988556,
1429
+ "learning_rate": 2.7075812274368237e-06,
1430
+ "loss": 1.1679,
1431
+ "step": 203
1432
+ },
1433
+ {
1434
+ "epoch": 0.7364620938628159,
1435
+ "grad_norm": 0.16096292436122894,
1436
+ "learning_rate": 2.6714801444043326e-06,
1437
+ "loss": 1.2091,
1438
+ "step": 204
1439
+ },
1440
+ {
1441
+ "epoch": 0.740072202166065,
1442
+ "grad_norm": 0.15853020548820496,
1443
+ "learning_rate": 2.6353790613718415e-06,
1444
+ "loss": 1.1895,
1445
+ "step": 205
1446
+ },
1447
+ {
1448
+ "epoch": 0.7436823104693141,
1449
+ "grad_norm": 0.15984389185905457,
1450
+ "learning_rate": 2.59927797833935e-06,
1451
+ "loss": 1.1678,
1452
+ "step": 206
1453
+ },
1454
+ {
1455
+ "epoch": 0.7472924187725631,
1456
+ "grad_norm": 0.17498087882995605,
1457
+ "learning_rate": 2.5631768953068593e-06,
1458
+ "loss": 1.216,
1459
+ "step": 207
1460
+ },
1461
+ {
1462
+ "epoch": 0.7509025270758123,
1463
+ "grad_norm": 0.16540172696113586,
1464
+ "learning_rate": 2.527075812274368e-06,
1465
+ "loss": 1.1639,
1466
+ "step": 208
1467
+ },
1468
+ {
1469
+ "epoch": 0.7545126353790613,
1470
+ "grad_norm": 0.15711258351802826,
1471
+ "learning_rate": 2.4909747292418775e-06,
1472
+ "loss": 1.1536,
1473
+ "step": 209
1474
+ },
1475
+ {
1476
+ "epoch": 0.7581227436823105,
1477
+ "grad_norm": 0.16287487745285034,
1478
+ "learning_rate": 2.4548736462093864e-06,
1479
+ "loss": 1.2153,
1480
+ "step": 210
1481
+ },
1482
+ {
1483
+ "epoch": 0.7617328519855595,
1484
+ "grad_norm": 0.1609215885400772,
1485
+ "learning_rate": 2.4187725631768953e-06,
1486
+ "loss": 1.1409,
1487
+ "step": 211
1488
+ },
1489
+ {
1490
+ "epoch": 0.7653429602888087,
1491
+ "grad_norm": 0.16139638423919678,
1492
+ "learning_rate": 2.3826714801444047e-06,
1493
+ "loss": 1.1572,
1494
+ "step": 212
1495
+ },
1496
+ {
1497
+ "epoch": 0.7689530685920578,
1498
+ "grad_norm": 0.16615326702594757,
1499
+ "learning_rate": 2.3465703971119136e-06,
1500
+ "loss": 1.2157,
1501
+ "step": 213
1502
+ },
1503
+ {
1504
+ "epoch": 0.7725631768953068,
1505
+ "grad_norm": 0.15731242299079895,
1506
+ "learning_rate": 2.3104693140794225e-06,
1507
+ "loss": 1.2271,
1508
+ "step": 214
1509
+ },
1510
+ {
1511
+ "epoch": 0.776173285198556,
1512
+ "grad_norm": 0.16469086706638336,
1513
+ "learning_rate": 2.274368231046932e-06,
1514
+ "loss": 1.2095,
1515
+ "step": 215
1516
+ },
1517
+ {
1518
+ "epoch": 0.779783393501805,
1519
+ "grad_norm": 0.1634146124124527,
1520
+ "learning_rate": 2.2382671480144407e-06,
1521
+ "loss": 1.2213,
1522
+ "step": 216
1523
+ },
1524
+ {
1525
+ "epoch": 0.7833935018050542,
1526
+ "grad_norm": 0.1631263792514801,
1527
+ "learning_rate": 2.2021660649819496e-06,
1528
+ "loss": 1.2069,
1529
+ "step": 217
1530
+ },
1531
+ {
1532
+ "epoch": 0.7870036101083032,
1533
+ "grad_norm": 0.1586577147245407,
1534
+ "learning_rate": 2.1660649819494585e-06,
1535
+ "loss": 1.2068,
1536
+ "step": 218
1537
+ },
1538
+ {
1539
+ "epoch": 0.7906137184115524,
1540
+ "grad_norm": 0.16697600483894348,
1541
+ "learning_rate": 2.129963898916968e-06,
1542
+ "loss": 1.197,
1543
+ "step": 219
1544
+ },
1545
+ {
1546
+ "epoch": 0.7942238267148014,
1547
+ "grad_norm": 0.1530206948518753,
1548
+ "learning_rate": 2.0938628158844768e-06,
1549
+ "loss": 1.1892,
1550
+ "step": 220
1551
+ },
1552
+ {
1553
+ "epoch": 0.7978339350180506,
1554
+ "grad_norm": 0.15931552648544312,
1555
+ "learning_rate": 2.0577617328519857e-06,
1556
+ "loss": 1.184,
1557
+ "step": 221
1558
+ },
1559
+ {
1560
+ "epoch": 0.8014440433212996,
1561
+ "grad_norm": 0.1628735512495041,
1562
+ "learning_rate": 2.0216606498194946e-06,
1563
+ "loss": 1.1724,
1564
+ "step": 222
1565
+ },
1566
+ {
1567
+ "epoch": 0.8050541516245487,
1568
+ "grad_norm": 0.15872938930988312,
1569
+ "learning_rate": 1.9855595667870035e-06,
1570
+ "loss": 1.2052,
1571
+ "step": 223
1572
+ },
1573
+ {
1574
+ "epoch": 0.8086642599277978,
1575
+ "grad_norm": 0.155653178691864,
1576
+ "learning_rate": 1.949458483754513e-06,
1577
+ "loss": 1.175,
1578
+ "step": 224
1579
+ },
1580
+ {
1581
+ "epoch": 0.8122743682310469,
1582
+ "grad_norm": 0.1663745492696762,
1583
+ "learning_rate": 1.9133574007220217e-06,
1584
+ "loss": 1.1574,
1585
+ "step": 225
1586
+ },
1587
+ {
1588
+ "epoch": 0.8158844765342961,
1589
+ "grad_norm": 0.15423379838466644,
1590
+ "learning_rate": 1.8772563176895308e-06,
1591
+ "loss": 1.1699,
1592
+ "step": 226
1593
+ },
1594
+ {
1595
+ "epoch": 0.8194945848375451,
1596
+ "grad_norm": 0.1763095110654831,
1597
+ "learning_rate": 1.84115523465704e-06,
1598
+ "loss": 1.1201,
1599
+ "step": 227
1600
+ },
1601
+ {
1602
+ "epoch": 0.8231046931407943,
1603
+ "grad_norm": 0.17264322936534882,
1604
+ "learning_rate": 1.805054151624549e-06,
1605
+ "loss": 1.145,
1606
+ "step": 228
1607
+ },
1608
+ {
1609
+ "epoch": 0.8267148014440433,
1610
+ "grad_norm": 0.16016638278961182,
1611
+ "learning_rate": 1.7689530685920577e-06,
1612
+ "loss": 1.1982,
1613
+ "step": 229
1614
+ },
1615
+ {
1616
+ "epoch": 0.8303249097472925,
1617
+ "grad_norm": 0.16354666650295258,
1618
+ "learning_rate": 1.7328519855595669e-06,
1619
+ "loss": 1.1657,
1620
+ "step": 230
1621
+ },
1622
+ {
1623
+ "epoch": 0.8339350180505415,
1624
+ "grad_norm": 0.15986226499080658,
1625
+ "learning_rate": 1.696750902527076e-06,
1626
+ "loss": 1.162,
1627
+ "step": 231
1628
+ },
1629
+ {
1630
+ "epoch": 0.8375451263537906,
1631
+ "grad_norm": 0.16978809237480164,
1632
+ "learning_rate": 1.6606498194945849e-06,
1633
+ "loss": 1.2128,
1634
+ "step": 232
1635
+ },
1636
+ {
1637
+ "epoch": 0.8411552346570397,
1638
+ "grad_norm": 0.16650137305259705,
1639
+ "learning_rate": 1.624548736462094e-06,
1640
+ "loss": 1.1999,
1641
+ "step": 233
1642
+ },
1643
+ {
1644
+ "epoch": 0.8447653429602888,
1645
+ "grad_norm": 0.1541033387184143,
1646
+ "learning_rate": 1.5884476534296031e-06,
1647
+ "loss": 1.1781,
1648
+ "step": 234
1649
+ },
1650
+ {
1651
+ "epoch": 0.8483754512635379,
1652
+ "grad_norm": 0.19125306606292725,
1653
+ "learning_rate": 1.5523465703971122e-06,
1654
+ "loss": 1.1827,
1655
+ "step": 235
1656
+ },
1657
+ {
1658
+ "epoch": 0.851985559566787,
1659
+ "grad_norm": 0.16457322239875793,
1660
+ "learning_rate": 1.516245487364621e-06,
1661
+ "loss": 1.2388,
1662
+ "step": 236
1663
+ },
1664
+ {
1665
+ "epoch": 0.855595667870036,
1666
+ "grad_norm": 0.157515749335289,
1667
+ "learning_rate": 1.48014440433213e-06,
1668
+ "loss": 1.1699,
1669
+ "step": 237
1670
+ },
1671
+ {
1672
+ "epoch": 0.8592057761732852,
1673
+ "grad_norm": 0.16585856676101685,
1674
+ "learning_rate": 1.4440433212996392e-06,
1675
+ "loss": 1.177,
1676
+ "step": 238
1677
+ },
1678
+ {
1679
+ "epoch": 0.8628158844765343,
1680
+ "grad_norm": 0.16027282178401947,
1681
+ "learning_rate": 1.407942238267148e-06,
1682
+ "loss": 1.1651,
1683
+ "step": 239
1684
+ },
1685
+ {
1686
+ "epoch": 0.8664259927797834,
1687
+ "grad_norm": 0.17101669311523438,
1688
+ "learning_rate": 1.3718411552346572e-06,
1689
+ "loss": 1.202,
1690
+ "step": 240
1691
+ },
1692
+ {
1693
+ "epoch": 0.8700361010830325,
1694
+ "grad_norm": 0.16695646941661835,
1695
+ "learning_rate": 1.3357400722021663e-06,
1696
+ "loss": 1.1909,
1697
+ "step": 241
1698
+ },
1699
+ {
1700
+ "epoch": 0.8736462093862816,
1701
+ "grad_norm": 0.16594435274600983,
1702
+ "learning_rate": 1.299638989169675e-06,
1703
+ "loss": 1.1822,
1704
+ "step": 242
1705
+ },
1706
+ {
1707
+ "epoch": 0.8772563176895307,
1708
+ "grad_norm": 0.1628897786140442,
1709
+ "learning_rate": 1.263537906137184e-06,
1710
+ "loss": 1.1553,
1711
+ "step": 243
1712
+ },
1713
+ {
1714
+ "epoch": 0.8808664259927798,
1715
+ "grad_norm": 0.15904118120670319,
1716
+ "learning_rate": 1.2274368231046932e-06,
1717
+ "loss": 1.203,
1718
+ "step": 244
1719
+ },
1720
+ {
1721
+ "epoch": 0.8844765342960289,
1722
+ "grad_norm": 0.16411305963993073,
1723
+ "learning_rate": 1.1913357400722023e-06,
1724
+ "loss": 1.1743,
1725
+ "step": 245
1726
+ },
1727
+ {
1728
+ "epoch": 0.8880866425992779,
1729
+ "grad_norm": 0.17120884358882904,
1730
+ "learning_rate": 1.1552346570397112e-06,
1731
+ "loss": 1.1664,
1732
+ "step": 246
1733
+ },
1734
+ {
1735
+ "epoch": 0.8916967509025271,
1736
+ "grad_norm": 0.1892375349998474,
1737
+ "learning_rate": 1.1191335740072204e-06,
1738
+ "loss": 1.233,
1739
+ "step": 247
1740
+ },
1741
+ {
1742
+ "epoch": 0.8953068592057761,
1743
+ "grad_norm": 0.1767963320016861,
1744
+ "learning_rate": 1.0830324909747293e-06,
1745
+ "loss": 1.1413,
1746
+ "step": 248
1747
+ },
1748
+ {
1749
+ "epoch": 0.8989169675090253,
1750
+ "grad_norm": 0.1606895476579666,
1751
+ "learning_rate": 1.0469314079422384e-06,
1752
+ "loss": 1.1729,
1753
+ "step": 249
1754
+ },
1755
+ {
1756
+ "epoch": 0.9025270758122743,
1757
+ "grad_norm": 0.16227878630161285,
1758
+ "learning_rate": 1.0108303249097473e-06,
1759
+ "loss": 1.1639,
1760
+ "step": 250
1761
+ },
1762
+ {
1763
+ "epoch": 0.9061371841155235,
1764
+ "grad_norm": 0.15408511459827423,
1765
+ "learning_rate": 9.747292418772564e-07,
1766
+ "loss": 1.1975,
1767
+ "step": 251
1768
+ },
1769
+ {
1770
+ "epoch": 0.9097472924187726,
1771
+ "grad_norm": 0.16033735871315002,
1772
+ "learning_rate": 9.386281588447654e-07,
1773
+ "loss": 1.139,
1774
+ "step": 252
1775
+ },
1776
+ {
1777
+ "epoch": 0.9133574007220217,
1778
+ "grad_norm": 0.1822793334722519,
1779
+ "learning_rate": 9.025270758122745e-07,
1780
+ "loss": 1.2005,
1781
+ "step": 253
1782
+ },
1783
+ {
1784
+ "epoch": 0.9169675090252708,
1785
+ "grad_norm": 0.15956829488277435,
1786
+ "learning_rate": 8.664259927797834e-07,
1787
+ "loss": 1.1522,
1788
+ "step": 254
1789
+ },
1790
+ {
1791
+ "epoch": 0.9205776173285198,
1792
+ "grad_norm": 0.16736841201782227,
1793
+ "learning_rate": 8.303249097472924e-07,
1794
+ "loss": 1.1861,
1795
+ "step": 255
1796
+ },
1797
+ {
1798
+ "epoch": 0.924187725631769,
1799
+ "grad_norm": 0.16128666698932648,
1800
+ "learning_rate": 7.942238267148016e-07,
1801
+ "loss": 1.1734,
1802
+ "step": 256
1803
+ },
1804
+ {
1805
+ "epoch": 0.927797833935018,
1806
+ "grad_norm": 0.15862034261226654,
1807
+ "learning_rate": 7.581227436823105e-07,
1808
+ "loss": 1.1777,
1809
+ "step": 257
1810
+ },
1811
+ {
1812
+ "epoch": 0.9314079422382672,
1813
+ "grad_norm": 0.1697748303413391,
1814
+ "learning_rate": 7.220216606498196e-07,
1815
+ "loss": 1.1463,
1816
+ "step": 258
1817
+ },
1818
+ {
1819
+ "epoch": 0.9350180505415162,
1820
+ "grad_norm": 0.18017210066318512,
1821
+ "learning_rate": 6.859205776173286e-07,
1822
+ "loss": 1.1699,
1823
+ "step": 259
1824
+ },
1825
+ {
1826
+ "epoch": 0.9386281588447654,
1827
+ "grad_norm": 0.17223116755485535,
1828
+ "learning_rate": 6.498194945848375e-07,
1829
+ "loss": 1.1728,
1830
+ "step": 260
1831
+ },
1832
+ {
1833
+ "epoch": 0.9422382671480144,
1834
+ "grad_norm": 0.15882454812526703,
1835
+ "learning_rate": 6.137184115523466e-07,
1836
+ "loss": 1.1493,
1837
+ "step": 261
1838
+ },
1839
+ {
1840
+ "epoch": 0.9458483754512635,
1841
+ "grad_norm": 0.1729775071144104,
1842
+ "learning_rate": 5.776173285198556e-07,
1843
+ "loss": 1.1578,
1844
+ "step": 262
1845
+ },
1846
+ {
1847
+ "epoch": 0.9494584837545126,
1848
+ "grad_norm": 0.16427132487297058,
1849
+ "learning_rate": 5.415162454873646e-07,
1850
+ "loss": 1.1765,
1851
+ "step": 263
1852
+ },
1853
+ {
1854
+ "epoch": 0.9530685920577617,
1855
+ "grad_norm": 0.17262426018714905,
1856
+ "learning_rate": 5.054151624548736e-07,
1857
+ "loss": 1.179,
1858
+ "step": 264
1859
+ },
1860
+ {
1861
+ "epoch": 0.9566787003610109,
1862
+ "grad_norm": 0.1654202789068222,
1863
+ "learning_rate": 4.693140794223827e-07,
1864
+ "loss": 1.1848,
1865
+ "step": 265
1866
+ },
1867
+ {
1868
+ "epoch": 0.9602888086642599,
1869
+ "grad_norm": 0.20516400039196014,
1870
+ "learning_rate": 4.332129963898917e-07,
1871
+ "loss": 1.2232,
1872
+ "step": 266
1873
+ },
1874
+ {
1875
+ "epoch": 0.9638989169675091,
1876
+ "grad_norm": 0.21095840632915497,
1877
+ "learning_rate": 3.971119133574008e-07,
1878
+ "loss": 1.2552,
1879
+ "step": 267
1880
+ },
1881
+ {
1882
+ "epoch": 0.9675090252707581,
1883
+ "grad_norm": 0.1694578379392624,
1884
+ "learning_rate": 3.610108303249098e-07,
1885
+ "loss": 1.2175,
1886
+ "step": 268
1887
+ },
1888
+ {
1889
+ "epoch": 0.9711191335740073,
1890
+ "grad_norm": 0.162958025932312,
1891
+ "learning_rate": 3.2490974729241875e-07,
1892
+ "loss": 1.1787,
1893
+ "step": 269
1894
+ },
1895
+ {
1896
+ "epoch": 0.9747292418772563,
1897
+ "grad_norm": 0.1914070099592209,
1898
+ "learning_rate": 2.888086642599278e-07,
1899
+ "loss": 1.2462,
1900
+ "step": 270
1901
+ },
1902
+ {
1903
+ "epoch": 0.9783393501805054,
1904
+ "grad_norm": 0.1614084094762802,
1905
+ "learning_rate": 2.527075812274368e-07,
1906
+ "loss": 1.1786,
1907
+ "step": 271
1908
+ },
1909
+ {
1910
+ "epoch": 0.9819494584837545,
1911
+ "grad_norm": 0.16462230682373047,
1912
+ "learning_rate": 2.1660649819494586e-07,
1913
+ "loss": 1.1988,
1914
+ "step": 272
1915
+ },
1916
+ {
1917
+ "epoch": 0.9855595667870036,
1918
+ "grad_norm": 0.15467168390750885,
1919
+ "learning_rate": 1.805054151624549e-07,
1920
+ "loss": 1.1816,
1921
+ "step": 273
1922
+ },
1923
+ {
1924
+ "epoch": 0.9891696750902527,
1925
+ "grad_norm": 0.15845248103141785,
1926
+ "learning_rate": 1.444043321299639e-07,
1927
+ "loss": 1.188,
1928
+ "step": 274
1929
+ },
1930
+ {
1931
+ "epoch": 0.9927797833935018,
1932
+ "grad_norm": 0.16426824033260345,
1933
+ "learning_rate": 1.0830324909747293e-07,
1934
+ "loss": 1.1641,
1935
+ "step": 275
1936
+ },
1937
+ {
1938
+ "epoch": 0.9963898916967509,
1939
+ "grad_norm": 0.163024440407753,
1940
+ "learning_rate": 7.220216606498195e-08,
1941
+ "loss": 1.1737,
1942
+ "step": 276
1943
+ },
1944
+ {
1945
+ "epoch": 1.0,
1946
+ "grad_norm": 0.16052114963531494,
1947
+ "learning_rate": 3.6101083032490976e-08,
1948
+ "loss": 1.1796,
1949
+ "step": 277
1950
+ }
1951
+ ],
1952
+ "logging_steps": 1.0,
1953
+ "max_steps": 277,
1954
+ "num_input_tokens_seen": 0,
1955
+ "num_train_epochs": 1,
1956
+ "save_steps": 0,
1957
+ "stateful_callbacks": {
1958
+ "TrainerControl": {
1959
+ "args": {
1960
+ "should_epoch_stop": false,
1961
+ "should_evaluate": false,
1962
+ "should_log": false,
1963
+ "should_save": true,
1964
+ "should_training_stop": true
1965
+ },
1966
+ "attributes": {}
1967
+ }
1968
+ },
1969
+ "total_flos": 4.126979006534779e+17,
1970
+ "train_batch_size": 1,
1971
+ "trial_name": null,
1972
+ "trial_params": null
1973
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff