--- library_name: transformers tags: - CoT - Code license: apache-2.0 language: - en - zh - ko - ru - de base_model: Qwen/Qwen2.5-7B-Instruct model_name: streamerbtw1002/Nexuim-R1-7B-Instruct revision: main --- ## Model Details **Model Name:** streamerbtw1002/Nexuim-R1-7B-Instruct **Developed by:** [James Phifer](https://nexusmind.tech/) (NexusMind.tech) **Funded by:** [Tristian](https://shuttleai.com/) (Shuttle.ai) **License:** Apache-2.0 **Finetuned from:** Qwen/Qwen2.5-VL-7B-Instruct **Architecture:** Transformer-based LLM ### Overview This model is designed to handle complex mathematical questions efficiently using Chain of Thought (CoT) reasoning. - **Capabilities:** - General-purpose LLM - Strong performance on multi-step reasoning tasks - Able to respond to requests ethically while preventing human harm - **Limitations:** - Not evaluated extensively - May generate incorrect or biased outputs in certain contexts ## Training Details **Dataset:** Trained on a **120k-line** CoT dataset for mathematical reasoning. **Training Hardware:** 1x A100 80GB GPU (Provided by Tristian at Shuttle.ai) ## Evaluation **Status:** Not formally tested yet. **Preliminary Results:** - Provides detailed, well-structured answers - Performs well on long-form mathematical problems ## Usage ```python from transformers import AutoConfig, AutoModel, AutoTokenizer model_id = "streamerbtw1002/Nexuim-R1-7B-Instruct" config = AutoConfig.from_pretrained( model_id, revision="main" ) model = AutoModel.from_pretrained( model_id, revision="main" ) tokenizer = AutoTokenizer.from_pretrained( model_id, revision="main" ) ```