File size: 3,190 Bytes
a354946
 
 
 
 
 
4eb152e
a354946
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a688651
a354946
 
a688651
a354946
 
a688651
a354946
 
a688651
4eb152e
 
a354946
 
 
 
 
 
 
 
 
a688651
 
 
 
 
a354946
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a688651
 
a354946
 
 
a688651
a354946
 
 
17e8c59
 
a688651
 
 
 
 
 
 
 
 
 
 
 
 
a354946
 
 
 
 
 
 
4eb152e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
license: cc-by-nc-sa-4.0
base_model: ufal/robeczech-base
tags:
- generated_from_trainer
datasets:
- stulcrad/CNEC2_0_flat
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: CNEC_2_0_robeczech-base
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: cnec
      type: cnec
      config: default
      split: validation
      args: default
    metrics:
    - name: Precision
      type: precision
      value: 0.853103448275862
    - name: Recall
      type: recall
      value: 0.8848354792560801
    - name: F1
      type: f1
      value: 0.8686797752808989
    - name: Accuracy
      type: accuracy
      value: 0.954457738324971
language:
- cs
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# CNEC_2_0_robeczech-base

This model is a fine-tuned version of [ufal/robeczech-base](https://huggingface.co/ufal/robeczech-base) on the cnec dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3306
- Precision: 0.8531
- Recall: 0.8848
- F1: 0.8687
- Accuracy: 0.9545

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.4499        | 2.22  | 2000  | 0.3871          | 0.7163    | 0.7099 | 0.7131 | 0.9222   |
| 0.2342        | 4.44  | 4000  | 0.2576          | 0.8149    | 0.8251 | 0.8200 | 0.9451   |
| 0.1449        | 6.67  | 6000  | 0.2407          | 0.8231    | 0.8523 | 0.8375 | 0.9492   |
| 0.1027        | 8.89  | 8000  | 0.2267          | 0.8362    | 0.8748 | 0.8551 | 0.9527   |
| 0.0751        | 11.11 | 10000 | 0.2429          | 0.8394    | 0.8712 | 0.8550 | 0.9522   |
| 0.0473        | 13.33 | 12000 | 0.2633          | 0.8439    | 0.8720 | 0.8577 | 0.9535   |
| 0.0369        | 15.56 | 14000 | 0.2821          | 0.8468    | 0.8755 | 0.8609 | 0.9541   |
| 0.0286        | 17.78 | 16000 | 0.2797          | 0.8534    | 0.8827 | 0.8678 | 0.9558   |
| 0.0234        | 20.0  | 18000 | 0.2860          | 0.8550    | 0.8834 | 0.8690 | 0.9558   |
| 0.0168        | 22.22 | 20000 | 0.3146          | 0.8471    | 0.8795 | 0.8630 | 0.9531   |
| 0.0142        | 24.44 | 22000 | 0.3165          | 0.8488    | 0.8816 | 0.8649 | 0.9530   |
| 0.011         | 26.67 | 24000 | 0.3291          | 0.8518    | 0.8816 | 0.8664 | 0.9537   |
| 0.0092        | 28.89 | 26000 | 0.3306          | 0.8531    | 0.8848 | 0.8687 | 0.9545   |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0