--- library_name: transformers license: cc-by-nc-sa-4.0 base_model: ufal/robeczech-base tags: - generated_from_trainer datasets: - generator metrics: - accuracy model-index: - name: Robeczech-CERED2 results: [] --- # Robeczech-CERED2 This model is a fine-tuned version of [ufal/robeczech-base](https://huggingface.co/ufal/robeczech-base) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 1.1300 - Accuracy: 0.8985 - Micro Precision: 0.8985 - Micro Recall: 0.8985 - Micro F1: 0.8985 - Macro Precision: 0.8711 - Macro Recall: 0.8608 - Macro F1: 0.8632 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1500 - num_epochs: 10 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Micro Precision | Micro Recall | Micro F1 | Macro Precision | Macro Recall | Macro F1 | |:-------------:|:------:|:------:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:| | 1.1585 | 1.0000 | 11305 | 1.1208 | 0.8608 | 0.8608 | 0.8608 | 0.8608 | 0.8155 | 0.7878 | 0.7914 | | 1.0617 | 2.0 | 22611 | 1.0567 | 0.8873 | 0.8873 | 0.8873 | 0.8873 | 0.8547 | 0.8428 | 0.8430 | | 0.9804 | 3.0000 | 33916 | 1.0558 | 0.8900 | 0.8900 | 0.8900 | 0.8900 | 0.8546 | 0.8414 | 0.8438 | | 0.9327 | 4.0 | 45222 | 1.0585 | 0.8920 | 0.8920 | 0.8920 | 0.8920 | 0.8557 | 0.8475 | 0.8483 | | 0.8927 | 5.0000 | 56527 | 1.0820 | 0.8917 | 0.8917 | 0.8917 | 0.8917 | 0.8484 | 0.8499 | 0.8455 | | 0.861 | 6.0 | 67833 | 1.0774 | 0.8982 | 0.8982 | 0.8982 | 0.8982 | 0.8596 | 0.8567 | 0.8545 | | 0.8344 | 7.0000 | 79138 | 1.0987 | 0.8979 | 0.8979 | 0.8979 | 0.8979 | 0.8641 | 0.8558 | 0.8567 | | 0.8222 | 8.0 | 90444 | 1.1113 | 0.8991 | 0.8991 | 0.8991 | 0.8991 | 0.8639 | 0.8544 | 0.8558 | | 0.8096 | 9.0000 | 101749 | 1.1159 | 0.9001 | 0.9001 | 0.9001 | 0.9001 | 0.8584 | 0.8589 | 0.8552 | | 0.8071 | 9.9996 | 113050 | 1.1176 | 0.8994 | 0.8994 | 0.8994 | 0.8994 | 0.8561 | 0.8577 | 0.8539 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3