subhasisj commited on
Commit
2c406ab
1 Parent(s): 5d11045

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ model-index:
5
+ - name: es-finetuned-squad-qa-minilmv2-16
6
+ results: []
7
+ ---
8
+
9
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
10
+ should probably proofread and complete it, then remove this comment. -->
11
+
12
+ # es-finetuned-squad-qa-minilmv2-16
13
+
14
+ This model is a fine-tuned version of [subhasisj/es-TAPT-MLM-MiniLM](https://huggingface.co/subhasisj/es-TAPT-MLM-MiniLM) on the None dataset.
15
+ It achieves the following results on the evaluation set:
16
+ - Loss: 1.2304
17
+
18
+ ## Model description
19
+
20
+ More information needed
21
+
22
+ ## Intended uses & limitations
23
+
24
+ More information needed
25
+
26
+ ## Training and evaluation data
27
+
28
+ More information needed
29
+
30
+ ## Training procedure
31
+
32
+ ### Training hyperparameters
33
+
34
+ The following hyperparameters were used during training:
35
+ - learning_rate: 3e-05
36
+ - train_batch_size: 16
37
+ - eval_batch_size: 16
38
+ - seed: 42
39
+ - gradient_accumulation_steps: 8
40
+ - total_train_batch_size: 128
41
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
42
+ - lr_scheduler_type: linear
43
+ - lr_scheduler_warmup_ratio: 0.1
44
+ - num_epochs: 5
45
+ - mixed_precision_training: Native AMP
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss |
50
+ |:-------------:|:-----:|:----:|:---------------:|
51
+ | 3.485 | 1.0 | 711 | 1.7377 |
52
+ | 1.6984 | 2.0 | 1422 | 1.3005 |
53
+ | 1.0772 | 3.0 | 2133 | 1.2348 |
54
+ | 0.9997 | 4.0 | 2844 | 1.2231 |
55
+ | 0.8976 | 5.0 | 3555 | 1.2304 |
56
+
57
+
58
+ ### Framework versions
59
+
60
+ - Transformers 4.18.0
61
+ - Pytorch 1.11.0+cu113
62
+ - Datasets 2.2.1
63
+ - Tokenizers 0.12.1