--- library_name: peft license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer model-index: - name: bambara-asr-v4 results: [] --- # bambara-asr-v4 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6734 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 0.9052 | 1.0 | 1708 | 0.9113 | | 0.8135 | 2.0 | 3416 | 0.8085 | | 0.762 | 3.0 | 5124 | 0.7595 | | 0.728 | 4.0 | 6832 | 0.7322 | | 0.6884 | 5.0 | 8540 | 0.7113 | | 0.6784 | 6.0 | 10248 | 0.6970 | | 0.6616 | 7.0 | 11956 | 0.6868 | | 0.679 | 8.0 | 13664 | 0.6789 | | 0.6574 | 9.0 | 15372 | 0.6754 | | 0.6217 | 9.9946 | 17070 | 0.6734 | ### Framework versions - PEFT 0.14.1.dev0 - Transformers 4.49.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0