--- library_name: peft license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer model-index: - name: maliba-asr-v0 results: [] --- # maliba-asr-v0 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2265 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 0.4581 | 0.9998 | 3502 | 0.2683 | | 0.3656 | 1.9998 | 7004 | 0.2527 | | 0.3463 | 2.9998 | 10506 | 0.2447 | | 0.2788 | 3.9998 | 14008 | 0.2405 | | 0.2607 | 4.9998 | 17510 | 0.2277 | | 0.202 | 5.9998 | 21012 | 0.2265 | ### Framework versions - PEFT 0.14.1.dev0 - Transformers 4.50.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0