--- library_name: peft license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer model-index: - name: maliba-asr-v2 results: [] --- # maliba-asr-v2 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3245 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.3987 | 1.0 | 531 | 0.4138 | | 0.3376 | 2.0 | 1062 | 0.3620 | | 0.2863 | 3.0 | 1593 | 0.3361 | | 0.2484 | 4.0 | 2124 | 0.3245 | ### Framework versions - PEFT 0.14.1.dev0 - Transformers 4.50.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0