|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import random |
|
|
|
import pytest |
|
from datasets import load_dataset |
|
from transformers import AutoTokenizer |
|
|
|
from llamafactory.data import get_dataset |
|
from llamafactory.hparams import get_train_args |
|
from llamafactory.model import load_tokenizer |
|
|
|
|
|
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") |
|
|
|
TRAIN_ARGS = { |
|
"model_name_or_path": TINY_LLAMA, |
|
"stage": "sft", |
|
"do_train": True, |
|
"finetuning_type": "full", |
|
"dataset": "llamafactory/tiny-supervised-dataset", |
|
"dataset_dir": "ONLINE", |
|
"template": "llama3", |
|
"cutoff_len": 8192, |
|
"overwrite_cache": True, |
|
"output_dir": "dummy_dir", |
|
"overwrite_output_dir": True, |
|
"fp16": True, |
|
} |
|
|
|
|
|
@pytest.mark.parametrize("num_samples", [16]) |
|
def test_supervised(num_samples: int): |
|
model_args, data_args, training_args, _, _ = get_train_args(TRAIN_ARGS) |
|
tokenizer_module = load_tokenizer(model_args) |
|
tokenizer = tokenizer_module["tokenizer"] |
|
tokenized_data = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module) |
|
|
|
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA) |
|
|
|
original_data = load_dataset(TRAIN_ARGS["dataset"], split="train") |
|
indexes = random.choices(range(len(original_data)), k=num_samples) |
|
for index in indexes: |
|
prompt = original_data[index]["instruction"] |
|
if original_data[index]["input"]: |
|
prompt += "\n" + original_data[index]["input"] |
|
|
|
messages = [ |
|
{"role": "user", "content": prompt}, |
|
{"role": "assistant", "content": original_data[index]["output"]}, |
|
] |
|
templated_result = ref_tokenizer.apply_chat_template(messages, tokenize=False) |
|
decoded_result = tokenizer.decode(tokenized_data["input_ids"][index]) |
|
assert templated_result == decoded_result |
|
|