# Use the Ubuntu 22.04 image with CANN 8.0.rc1 # More versions can be found at https://hub.docker.com/r/cosdt/cann/tags # FROM cosdt/cann:8.0.rc1-910-ubuntu22.04 FROM cosdt/cann:8.0.rc1-910b-ubuntu22.04 # FROM cosdt/cann:8.0.rc1-910-openeuler22.03 # FROM cosdt/cann:8.0.rc1-910b-openeuler22.03 # Define environments ENV DEBIAN_FRONTEND=noninteractive # Define installation arguments ARG INSTALL_DEEPSPEED=false ARG PIP_INDEX=https://pypi.org/simple ARG TORCH_INDEX=https://download.pytorch.org/whl/cpu # Set the working directory WORKDIR /app # Install the requirements COPY requirements.txt /app RUN pip config set global.index-url "$PIP_INDEX" && \ pip config set global.extra-index-url "$TORCH_INDEX" && \ python -m pip install --upgrade pip && \ python -m pip install -r requirements.txt # Copy the rest of the application into the image COPY . /app # Install the LLaMA Factory RUN EXTRA_PACKAGES="torch-npu,metrics"; \ if [ "$INSTALL_DEEPSPEED" == "true" ]; then \ EXTRA_PACKAGES="${EXTRA_PACKAGES},deepspeed"; \ fi; \ pip install -e ".[$EXTRA_PACKAGES]" # Set up volumes VOLUME [ "/root/.cache/huggingface", "/root/.cache/modelscope", "/app/data", "/app/output" ] # Expose port 7860 for the LLaMA Board ENV GRADIO_SERVER_PORT 7860 EXPOSE 7860 # Expose port 8000 for the API service ENV API_PORT 8000 EXPOSE 8000