--- language: - en - de - es - fr - hi - it - ja - ko - pl - pt - ru - tr - zh thumbnail: >- https://user-images.githubusercontent.com/5068315/230698495-cbb1ced9-c911-4c9a-941d-a1a4a1286ac6.png library: bark license: mit tags: - bark - audio - text-to-speech pipeline_tag: text-to-speech inference: true --- # Bark Bark is a transformer-based text-to-audio model created by [Suno](https://www.suno.ai). Bark can generate highly realistic, multilingual speech as well as other audio - including music, background noise and simple sound effects. The model can also produce nonverbal communications like laughing, sighing and crying. To support the research community, we are providing access to pretrained model checkpoints ready for inference. The original github repo and model card can be found [here](https://github.com/suno-ai/bark). This model is meant for research purposes only. The model output is not censored and the authors do not endorse the opinions in the generated content. Use at your own risk. Two checkpoints are released: - [small](https://huggingface.co/suno/bark-small) - [**large** (this checkpoint)](https://huggingface.co/suno/bark) ## Example Try out Bark yourself! * Bark Colab: Open In Colab * Hugging Face Colab: Open In Colab * Hugging Face Demo: Open in HuggingFace ## 🤗 Transformers Usage You can run Bark locally with the 🤗 Transformers library from version 4.31.0 onwards. 1. First install the 🤗 [Transformers library](https://github.com/huggingface/transformers) from main: ``` pip install git+https://github.com/huggingface/transformers.git ``` 2. Run the following Python code to generate speech samples: ```python from transformers import AutoProcessor, AutoModel processor = AutoProcessor.from_pretrained("suno/bark-small") model = AutoModel.from_pretrained("suno/bark-small") inputs = processor( text=["Hello, my name is Suno. And, uh — and I like pizza. [laughs] But I also have other interests such as playing tic tac toe."], return_tensors="pt", ) speech_values = model.generate(**inputs, do_sample=True) ``` 3. Listen to the speech samples either in an ipynb notebook: ```python from IPython.display import Audio sampling_rate = model.generation_config.sample_rate Audio(speech_values.cpu().numpy().squeeze(), rate=sampling_rate) ``` Or save them as a `.wav` file using a third-party library, e.g. `scipy`: ```python import scipy sampling_rate = model.config.sample_rate scipy.io.wavfile.write("bark_out.wav", rate=sampling_rate, data=speech_values.cpu().numpy().squeeze()) ``` For more details on using the Bark model for inference using the 🤗 Transformers library, refer to the [Bark docs](https://huggingface.co/docs/transformers/model_doc/bark). ## Suno Usage You can also run Bark locally through the original [Bark library]((https://github.com/suno-ai/bark): 1. First install the [`bark` library](https://github.com/suno-ai/bark) 3. Run the following Python code: ```python from bark import SAMPLE_RATE, generate_audio, preload_models from IPython.display import Audio # download and load all models preload_models() # generate audio from text text_prompt = """ Hello, my name is Suno. And, uh — and I like pizza. [laughs] But I also have other interests such as playing tic tac toe. """ speech_array = generate_audio(text_prompt) # play text in notebook Audio(speech_array, rate=SAMPLE_RATE) ``` [pizza.webm](https://user-images.githubusercontent.com/5068315/230490503-417e688d-5115-4eee-9550-b46a2b465ee3.webm) To save `audio_array` as a WAV file: ```python from scipy.io.wavfile import write as write_wav write_wav("/path/to/audio.wav", SAMPLE_RATE, audio_array) ``` ## Model Details The following is additional information about the models released here. Bark is a series of three transformer models that turn text into audio. ### Text to semantic tokens - Input: text, tokenized with [BERT tokenizer from Hugging Face](https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer) - Output: semantic tokens that encode the audio to be generated ### Semantic to coarse tokens - Input: semantic tokens - Output: tokens from the first two codebooks of the [EnCodec Codec](https://github.com/facebookresearch/encodec) from facebook ### Coarse to fine tokens - Input: the first two codebooks from EnCodec - Output: 8 codebooks from EnCodec ### Architecture | Model | Parameters | Attention | Output Vocab size | |:-------------------------:|:----------:|------------|:-----------------:| | Text to semantic tokens | 80/300 M | Causal | 10,000 | | Semantic to coarse tokens | 80/300 M | Causal | 2x 1,024 | | Coarse to fine tokens | 80/300 M | Non-causal | 6x 1,024 | ### Release date April 2023 ## Broader Implications We anticipate that this model's text to audio capabilities can be used to improve accessbility tools in a variety of languages. While we hope that this release will enable users to express their creativity and build applications that are a force for good, we acknowledge that any text to audio model has the potential for dual use. While it is not straightforward to voice clone known people with Bark, it can still be used for nefarious purposes. To further reduce the chances of unintended use of Bark, we also release a simple classifier to detect Bark-generated audio with high accuracy (see notebooks section of the main repository).