--- base_model: Alexander-Learn/bert-finetuned-squad tags: - generated_from_trainer metrics: - f1 model-index: - name: bert-finetuned-squad-finetuned-DouRC_squad results: [] --- # bert-finetuned-squad-finetuned-DouRC_squad This model is a fine-tuned version of [Alexander-Learn/bert-finetuned-squad](https://huggingface.co/Alexander-Learn/bert-finetuned-squad) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2794 - Exact Match: 0.725 - F1: 0.5962 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 72 - eval_batch_size: 72 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Exact Match | F1 | |:-------------:|:-----:|:----:|:---------------:|:-----------:|:------:| | 1.1781 | 1.0 | 828 | 1.1097 | 0.72 | 0.6202 | | 0.9177 | 2.0 | 1656 | 1.1056 | 0.715 | 0.5938 | | 0.7366 | 3.0 | 2484 | 1.1415 | 0.715 | 0.5756 | | 0.6056 | 4.0 | 3312 | 1.2132 | 0.71 | 0.5830 | | 0.5191 | 5.0 | 4140 | 1.2794 | 0.725 | 0.5962 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1