svjack commited on
Commit
d0b42d2
·
verified ·
1 Parent(s): 3b8cb6c

Upload pipeline_stg_hunyuan_video.py

Browse files
Files changed (1) hide show
  1. pipeline_stg_hunyuan_video.py +790 -0
pipeline_stg_hunyuan_video.py ADDED
@@ -0,0 +1,790 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The HunyuanVideo Team and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import types
16
+ import inspect
17
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
18
+
19
+ import numpy as np
20
+ import torch
21
+ from transformers import CLIPTextModel, CLIPTokenizer, LlamaModel, LlamaTokenizerFast
22
+
23
+ from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
24
+ from diffusers.loaders import HunyuanVideoLoraLoaderMixin
25
+ from diffusers.models import AutoencoderKLHunyuanVideo, HunyuanVideoTransformer3DModel
26
+ from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
27
+ from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring
28
+ from diffusers.utils.torch_utils import randn_tensor
29
+ from diffusers.video_processor import VideoProcessor
30
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
31
+ from diffusers.pipelines.hunyuan_video.pipeline_output import HunyuanVideoPipelineOutput
32
+
33
+
34
+ if is_torch_xla_available():
35
+ import torch_xla.core.xla_model as xm
36
+
37
+ XLA_AVAILABLE = True
38
+ else:
39
+ XLA_AVAILABLE = False
40
+
41
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
42
+
43
+
44
+ EXAMPLE_DOC_STRING = """
45
+ Examples:
46
+ ```python
47
+ >>> import torch
48
+ >>> from diffusers import HunyuanVideoPipeline, HunyuanVideoTransformer3DModel
49
+ >>> from diffusers.utils import export_to_video
50
+
51
+ >>> model_id = "hunyuanvideo-community/HunyuanVideo"
52
+ >>> transformer = HunyuanVideoTransformer3DModel.from_pretrained(
53
+ ... model_id, subfolder="transformer", torch_dtype=torch.bfloat16
54
+ ... )
55
+ >>> pipe = HunyuanVideoPipeline.from_pretrained(model_id, transformer=transformer, torch_dtype=torch.float16)
56
+ >>> pipe.vae.enable_tiling()
57
+ >>> pipe.to("cuda")
58
+
59
+ >>> output = pipe(
60
+ ... prompt="A cat walks on the grass, realistic",
61
+ ... height=320,
62
+ ... width=512,
63
+ ... num_frames=61,
64
+ ... num_inference_steps=30,
65
+ ... ).frames[0]
66
+ >>> export_to_video(output, "output.mp4", fps=15)
67
+ ```
68
+ """
69
+
70
+
71
+ DEFAULT_PROMPT_TEMPLATE = {
72
+ "template": (
73
+ "<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: "
74
+ "1. The main content and theme of the video."
75
+ "2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects."
76
+ "3. Actions, events, behaviors temporal relationships, physical movement changes of the objects."
77
+ "4. background environment, light, style and atmosphere."
78
+ "5. camera angles, movements, and transitions used in the video:<|eot_id|>"
79
+ "<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
80
+ ),
81
+ "crop_start": 95,
82
+ }
83
+
84
+
85
+ def forward_with_stg(
86
+ self,
87
+ hidden_states: torch.Tensor,
88
+ encoder_hidden_states: torch.Tensor,
89
+ temb: torch.Tensor,
90
+ attention_mask: Optional[torch.Tensor] = None,
91
+ freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
92
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
93
+ return hidden_states, encoder_hidden_states
94
+
95
+
96
+ def forward_without_stg(
97
+ self,
98
+ hidden_states: torch.Tensor,
99
+ encoder_hidden_states: torch.Tensor,
100
+ temb: torch.Tensor,
101
+ attention_mask: Optional[torch.Tensor] = None,
102
+ freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
103
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
104
+ # 1. Input normalization
105
+ norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
106
+ norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
107
+ encoder_hidden_states, emb=temb
108
+ )
109
+
110
+ # 2. Joint attention
111
+ attn_output, context_attn_output = self.attn(
112
+ hidden_states=norm_hidden_states,
113
+ encoder_hidden_states=norm_encoder_hidden_states,
114
+ attention_mask=attention_mask,
115
+ image_rotary_emb=freqs_cis,
116
+ )
117
+
118
+ # 3. Modulation and residual connection
119
+ hidden_states = hidden_states + attn_output * gate_msa.unsqueeze(1)
120
+ encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa.unsqueeze(1)
121
+
122
+ norm_hidden_states = self.norm2(hidden_states)
123
+ norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
124
+
125
+ norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
126
+ norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
127
+
128
+ # 4. Feed-forward
129
+ ff_output = self.ff(norm_hidden_states)
130
+ context_ff_output = self.ff_context(norm_encoder_hidden_states)
131
+
132
+ hidden_states = hidden_states + gate_mlp.unsqueeze(1) * ff_output
133
+ encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
134
+
135
+ return hidden_states, encoder_hidden_states
136
+
137
+
138
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
139
+ def retrieve_timesteps(
140
+ scheduler,
141
+ num_inference_steps: Optional[int] = None,
142
+ device: Optional[Union[str, torch.device]] = None,
143
+ timesteps: Optional[List[int]] = None,
144
+ sigmas: Optional[List[float]] = None,
145
+ **kwargs,
146
+ ):
147
+ r"""
148
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
149
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
150
+
151
+ Args:
152
+ scheduler (`SchedulerMixin`):
153
+ The scheduler to get timesteps from.
154
+ num_inference_steps (`int`):
155
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
156
+ must be `None`.
157
+ device (`str` or `torch.device`, *optional*):
158
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
159
+ timesteps (`List[int]`, *optional*):
160
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
161
+ `num_inference_steps` and `sigmas` must be `None`.
162
+ sigmas (`List[float]`, *optional*):
163
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
164
+ `num_inference_steps` and `timesteps` must be `None`.
165
+
166
+ Returns:
167
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
168
+ second element is the number of inference steps.
169
+ """
170
+ if timesteps is not None and sigmas is not None:
171
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
172
+ if timesteps is not None:
173
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
174
+ if not accepts_timesteps:
175
+ raise ValueError(
176
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
177
+ f" timestep schedules. Please check whether you are using the correct scheduler."
178
+ )
179
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
180
+ timesteps = scheduler.timesteps
181
+ num_inference_steps = len(timesteps)
182
+ elif sigmas is not None:
183
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
184
+ if not accept_sigmas:
185
+ raise ValueError(
186
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
187
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
188
+ )
189
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
190
+ timesteps = scheduler.timesteps
191
+ num_inference_steps = len(timesteps)
192
+ else:
193
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
194
+ timesteps = scheduler.timesteps
195
+ return timesteps, num_inference_steps
196
+
197
+
198
+ class HunyuanVideoSTGPipeline(DiffusionPipeline, HunyuanVideoLoraLoaderMixin):
199
+ r"""
200
+ Pipeline for text-to-video generation using HunyuanVideo.
201
+
202
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
203
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
204
+
205
+ Args:
206
+ text_encoder ([`LlamaModel`]):
207
+ [Llava Llama3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers).
208
+ tokenizer (`LlamaTokenizer`):
209
+ Tokenizer from [Llava Llama3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers).
210
+ transformer ([`HunyuanVideoTransformer3DModel`]):
211
+ Conditional Transformer to denoise the encoded image latents.
212
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
213
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
214
+ vae ([`AutoencoderKLHunyuanVideo`]):
215
+ Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
216
+ text_encoder_2 ([`CLIPTextModel`]):
217
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
218
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
219
+ tokenizer_2 (`CLIPTokenizer`):
220
+ Tokenizer of class
221
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
222
+ """
223
+
224
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
225
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
226
+
227
+ def __init__(
228
+ self,
229
+ text_encoder: LlamaModel,
230
+ tokenizer: LlamaTokenizerFast,
231
+ transformer: HunyuanVideoTransformer3DModel,
232
+ vae: AutoencoderKLHunyuanVideo,
233
+ scheduler: FlowMatchEulerDiscreteScheduler,
234
+ text_encoder_2: CLIPTextModel,
235
+ tokenizer_2: CLIPTokenizer,
236
+ ):
237
+ super().__init__()
238
+
239
+ self.register_modules(
240
+ vae=vae,
241
+ text_encoder=text_encoder,
242
+ tokenizer=tokenizer,
243
+ transformer=transformer,
244
+ scheduler=scheduler,
245
+ text_encoder_2=text_encoder_2,
246
+ tokenizer_2=tokenizer_2,
247
+ )
248
+
249
+ self.vae_scale_factor_temporal = self.vae.temporal_compression_ratio if getattr(self, "vae", None) else 4
250
+ self.vae_scale_factor_spatial = self.vae.spatial_compression_ratio if getattr(self, "vae", None) else 8
251
+ self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
252
+
253
+ def _get_llama_prompt_embeds(
254
+ self,
255
+ prompt: Union[str, List[str]],
256
+ prompt_template: Dict[str, Any],
257
+ num_videos_per_prompt: int = 1,
258
+ device: Optional[torch.device] = None,
259
+ dtype: Optional[torch.dtype] = None,
260
+ max_sequence_length: int = 256,
261
+ num_hidden_layers_to_skip: int = 2,
262
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
263
+ device = device or self._execution_device
264
+ dtype = dtype or self.text_encoder.dtype
265
+
266
+ prompt = [prompt] if isinstance(prompt, str) else prompt
267
+ batch_size = len(prompt)
268
+
269
+ prompt = [prompt_template["template"].format(p) for p in prompt]
270
+
271
+ crop_start = prompt_template.get("crop_start", None)
272
+ if crop_start is None:
273
+ prompt_template_input = self.tokenizer(
274
+ prompt_template["template"],
275
+ padding="max_length",
276
+ return_tensors="pt",
277
+ return_length=False,
278
+ return_overflowing_tokens=False,
279
+ return_attention_mask=False,
280
+ )
281
+ crop_start = prompt_template_input["input_ids"].shape[-1]
282
+ # Remove <|eot_id|> token and placeholder {}
283
+ crop_start -= 2
284
+
285
+ max_sequence_length += crop_start
286
+ text_inputs = self.tokenizer(
287
+ prompt,
288
+ max_length=max_sequence_length,
289
+ padding="max_length",
290
+ truncation=True,
291
+ return_tensors="pt",
292
+ return_length=False,
293
+ return_overflowing_tokens=False,
294
+ return_attention_mask=True,
295
+ )
296
+ text_input_ids = text_inputs.input_ids.to(device=device)
297
+ prompt_attention_mask = text_inputs.attention_mask.to(device=device)
298
+
299
+ prompt_embeds = self.text_encoder(
300
+ input_ids=text_input_ids,
301
+ attention_mask=prompt_attention_mask,
302
+ output_hidden_states=True,
303
+ ).hidden_states[-(num_hidden_layers_to_skip + 1)]
304
+ prompt_embeds = prompt_embeds.to(dtype=dtype)
305
+
306
+ if crop_start is not None and crop_start > 0:
307
+ prompt_embeds = prompt_embeds[:, crop_start:]
308
+ prompt_attention_mask = prompt_attention_mask[:, crop_start:]
309
+
310
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
311
+ _, seq_len, _ = prompt_embeds.shape
312
+ prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
313
+ prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
314
+ prompt_attention_mask = prompt_attention_mask.repeat(1, num_videos_per_prompt)
315
+ prompt_attention_mask = prompt_attention_mask.view(batch_size * num_videos_per_prompt, seq_len)
316
+
317
+ return prompt_embeds, prompt_attention_mask
318
+
319
+ def _get_clip_prompt_embeds(
320
+ self,
321
+ prompt: Union[str, List[str]],
322
+ num_videos_per_prompt: int = 1,
323
+ device: Optional[torch.device] = None,
324
+ dtype: Optional[torch.dtype] = None,
325
+ max_sequence_length: int = 77,
326
+ ) -> torch.Tensor:
327
+ device = device or self._execution_device
328
+ dtype = dtype or self.text_encoder_2.dtype
329
+
330
+ prompt = [prompt] if isinstance(prompt, str) else prompt
331
+ batch_size = len(prompt)
332
+
333
+ text_inputs = self.tokenizer_2(
334
+ prompt,
335
+ padding="max_length",
336
+ max_length=max_sequence_length,
337
+ truncation=True,
338
+ return_tensors="pt",
339
+ )
340
+
341
+ text_input_ids = text_inputs.input_ids
342
+ untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
343
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
344
+ removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
345
+ logger.warning(
346
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
347
+ f" {max_sequence_length} tokens: {removed_text}"
348
+ )
349
+
350
+ prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False).pooler_output
351
+
352
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
353
+ prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt)
354
+ prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, -1)
355
+
356
+ return prompt_embeds
357
+
358
+ def encode_prompt(
359
+ self,
360
+ prompt: Union[str, List[str]],
361
+ prompt_2: Union[str, List[str]] = None,
362
+ prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE,
363
+ num_videos_per_prompt: int = 1,
364
+ prompt_embeds: Optional[torch.Tensor] = None,
365
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
366
+ prompt_attention_mask: Optional[torch.Tensor] = None,
367
+ device: Optional[torch.device] = None,
368
+ dtype: Optional[torch.dtype] = None,
369
+ max_sequence_length: int = 256,
370
+ ):
371
+ if prompt_embeds is None:
372
+ prompt_embeds, prompt_attention_mask = self._get_llama_prompt_embeds(
373
+ prompt,
374
+ prompt_template,
375
+ num_videos_per_prompt,
376
+ device=device,
377
+ dtype=dtype,
378
+ max_sequence_length=max_sequence_length,
379
+ )
380
+
381
+ if pooled_prompt_embeds is None:
382
+ if prompt_2 is None and pooled_prompt_embeds is None:
383
+ prompt_2 = prompt
384
+ pooled_prompt_embeds = self._get_clip_prompt_embeds(
385
+ prompt,
386
+ num_videos_per_prompt,
387
+ device=device,
388
+ dtype=dtype,
389
+ max_sequence_length=77,
390
+ )
391
+
392
+ return prompt_embeds, pooled_prompt_embeds, prompt_attention_mask
393
+
394
+ def check_inputs(
395
+ self,
396
+ prompt,
397
+ prompt_2,
398
+ height,
399
+ width,
400
+ prompt_embeds=None,
401
+ callback_on_step_end_tensor_inputs=None,
402
+ prompt_template=None,
403
+ ):
404
+ if height % 16 != 0 or width % 16 != 0:
405
+ raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.")
406
+
407
+ if callback_on_step_end_tensor_inputs is not None and not all(
408
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
409
+ ):
410
+ raise ValueError(
411
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
412
+ )
413
+
414
+ if prompt is not None and prompt_embeds is not None:
415
+ raise ValueError(
416
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
417
+ " only forward one of the two."
418
+ )
419
+ elif prompt_2 is not None and prompt_embeds is not None:
420
+ raise ValueError(
421
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
422
+ " only forward one of the two."
423
+ )
424
+ elif prompt is None and prompt_embeds is None:
425
+ raise ValueError(
426
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
427
+ )
428
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
429
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
430
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
431
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
432
+
433
+ if prompt_template is not None:
434
+ if not isinstance(prompt_template, dict):
435
+ raise ValueError(f"`prompt_template` has to be of type `dict` but is {type(prompt_template)}")
436
+ if "template" not in prompt_template:
437
+ raise ValueError(
438
+ f"`prompt_template` has to contain a key `template` but only found {prompt_template.keys()}"
439
+ )
440
+
441
+ def prepare_latents(
442
+ self,
443
+ batch_size: int,
444
+ num_channels_latents: 32,
445
+ height: int = 720,
446
+ width: int = 1280,
447
+ num_frames: int = 129,
448
+ dtype: Optional[torch.dtype] = None,
449
+ device: Optional[torch.device] = None,
450
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
451
+ latents: Optional[torch.Tensor] = None,
452
+ ) -> torch.Tensor:
453
+ if latents is not None:
454
+ return latents.to(device=device, dtype=dtype)
455
+
456
+ shape = (
457
+ batch_size,
458
+ num_channels_latents,
459
+ num_frames,
460
+ int(height) // self.vae_scale_factor_spatial,
461
+ int(width) // self.vae_scale_factor_spatial,
462
+ )
463
+ if isinstance(generator, list) and len(generator) != batch_size:
464
+ raise ValueError(
465
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
466
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
467
+ )
468
+
469
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
470
+ return latents
471
+
472
+ def enable_vae_slicing(self):
473
+ r"""
474
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
475
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
476
+ """
477
+ self.vae.enable_slicing()
478
+
479
+ def disable_vae_slicing(self):
480
+ r"""
481
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
482
+ computing decoding in one step.
483
+ """
484
+ self.vae.disable_slicing()
485
+
486
+ def enable_vae_tiling(self):
487
+ r"""
488
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
489
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
490
+ processing larger images.
491
+ """
492
+ self.vae.enable_tiling()
493
+
494
+ def disable_vae_tiling(self):
495
+ r"""
496
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
497
+ computing decoding in one step.
498
+ """
499
+ self.vae.disable_tiling()
500
+
501
+ @property
502
+ def guidance_scale(self):
503
+ return self._guidance_scale
504
+
505
+ @property
506
+ def do_spatio_temporal_guidance(self):
507
+ return self._stg_scale > 0.0
508
+
509
+ @property
510
+ def num_timesteps(self):
511
+ return self._num_timesteps
512
+
513
+ @property
514
+ def attention_kwargs(self):
515
+ return self._attention_kwargs
516
+
517
+ @property
518
+ def current_timestep(self):
519
+ return self._current_timestep
520
+
521
+ @property
522
+ def interrupt(self):
523
+ return self._interrupt
524
+
525
+ @torch.no_grad()
526
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
527
+ def __call__(
528
+ self,
529
+ prompt: Union[str, List[str]] = None,
530
+ prompt_2: Union[str, List[str]] = None,
531
+ height: int = 720,
532
+ width: int = 1280,
533
+ num_frames: int = 129,
534
+ num_inference_steps: int = 50,
535
+ sigmas: List[float] = None,
536
+ guidance_scale: float = 6.0,
537
+ num_videos_per_prompt: Optional[int] = 1,
538
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
539
+ latents: Optional[torch.Tensor] = None,
540
+ prompt_embeds: Optional[torch.Tensor] = None,
541
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
542
+ prompt_attention_mask: Optional[torch.Tensor] = None,
543
+ output_type: Optional[str] = "pil",
544
+ return_dict: bool = True,
545
+ attention_kwargs: Optional[Dict[str, Any]] = None,
546
+ callback_on_step_end: Optional[
547
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
548
+ ] = None,
549
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
550
+ prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE,
551
+ max_sequence_length: int = 256,
552
+ stg_applied_layers_idx: Optional[List[int]] = [2],
553
+ stg_scale: Optional[float] = 0.0,
554
+ do_rescaling: Optional[bool] = False,
555
+ ):
556
+ r"""
557
+ The call function to the pipeline for generation.
558
+
559
+ Args:
560
+ prompt (`str` or `List[str]`, *optional*):
561
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
562
+ instead.
563
+ prompt_2 (`str` or `List[str]`, *optional*):
564
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
565
+ will be used instead.
566
+ height (`int`, defaults to `720`):
567
+ The height in pixels of the generated image.
568
+ width (`int`, defaults to `1280`):
569
+ The width in pixels of the generated image.
570
+ num_frames (`int`, defaults to `129`):
571
+ The number of frames in the generated video.
572
+ num_inference_steps (`int`, defaults to `50`):
573
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
574
+ expense of slower inference.
575
+ sigmas (`List[float]`, *optional*):
576
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
577
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
578
+ will be used.
579
+ guidance_scale (`float`, defaults to `6.0`):
580
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
581
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
582
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
583
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
584
+ usually at the expense of lower image quality. Note that the only available HunyuanVideo model is
585
+ CFG-distilled, which means that traditional guidance between unconditional and conditional latent is
586
+ not applied.
587
+ num_videos_per_prompt (`int`, *optional*, defaults to 1):
588
+ The number of images to generate per prompt.
589
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
590
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
591
+ generation deterministic.
592
+ latents (`torch.Tensor`, *optional*):
593
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
594
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
595
+ tensor is generated by sampling using the supplied random `generator`.
596
+ prompt_embeds (`torch.Tensor`, *optional*):
597
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
598
+ provided, text embeddings are generated from the `prompt` input argument.
599
+ output_type (`str`, *optional*, defaults to `"pil"`):
600
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
601
+ return_dict (`bool`, *optional*, defaults to `True`):
602
+ Whether or not to return a [`HunyuanVideoPipelineOutput`] instead of a plain tuple.
603
+ attention_kwargs (`dict`, *optional*):
604
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
605
+ `self.processor` in
606
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
607
+ clip_skip (`int`, *optional*):
608
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
609
+ the output of the pre-final layer will be used for computing the prompt embeddings.
610
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
611
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
612
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
613
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
614
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
615
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
616
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
617
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
618
+ `._callback_tensor_inputs` attribute of your pipeline class.
619
+
620
+ Examples:
621
+
622
+ Returns:
623
+ [`~HunyuanVideoPipelineOutput`] or `tuple`:
624
+ If `return_dict` is `True`, [`HunyuanVideoPipelineOutput`] is returned, otherwise a `tuple` is returned
625
+ where the first element is a list with the generated images and the second element is a list of `bool`s
626
+ indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.
627
+ """
628
+
629
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
630
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
631
+
632
+ # 1. Check inputs. Raise error if not correct
633
+ self.check_inputs(
634
+ prompt,
635
+ prompt_2,
636
+ height,
637
+ width,
638
+ prompt_embeds,
639
+ callback_on_step_end_tensor_inputs,
640
+ prompt_template,
641
+ )
642
+
643
+ self._stg_scale = stg_scale
644
+ self._guidance_scale = guidance_scale
645
+ self._attention_kwargs = attention_kwargs
646
+ self._current_timestep = None
647
+ self._interrupt = False
648
+
649
+ device = self._execution_device
650
+
651
+ # 2. Define call parameters
652
+ if prompt is not None and isinstance(prompt, str):
653
+ batch_size = 1
654
+ elif prompt is not None and isinstance(prompt, list):
655
+ batch_size = len(prompt)
656
+ else:
657
+ batch_size = prompt_embeds.shape[0]
658
+
659
+ # 3. Encode input prompt
660
+ prompt_embeds, pooled_prompt_embeds, prompt_attention_mask = self.encode_prompt(
661
+ prompt=prompt,
662
+ prompt_2=prompt_2,
663
+ prompt_template=prompt_template,
664
+ num_videos_per_prompt=num_videos_per_prompt,
665
+ prompt_embeds=prompt_embeds,
666
+ pooled_prompt_embeds=pooled_prompt_embeds,
667
+ prompt_attention_mask=prompt_attention_mask,
668
+ device=device,
669
+ max_sequence_length=max_sequence_length,
670
+ )
671
+
672
+ transformer_dtype = self.transformer.dtype
673
+ prompt_embeds = prompt_embeds.to(transformer_dtype)
674
+ prompt_attention_mask = prompt_attention_mask.to(transformer_dtype)
675
+ if pooled_prompt_embeds is not None:
676
+ pooled_prompt_embeds = pooled_prompt_embeds.to(transformer_dtype)
677
+
678
+ # 4. Prepare timesteps
679
+ sigmas = np.linspace(1.0, 0.0, num_inference_steps + 1)[:-1] if sigmas is None else sigmas
680
+ timesteps, num_inference_steps = retrieve_timesteps(
681
+ self.scheduler,
682
+ num_inference_steps,
683
+ device,
684
+ sigmas=sigmas,
685
+ )
686
+
687
+ # 5. Prepare latent variables
688
+ num_channels_latents = self.transformer.config.in_channels
689
+ num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
690
+ latents = self.prepare_latents(
691
+ batch_size * num_videos_per_prompt,
692
+ num_channels_latents,
693
+ height,
694
+ width,
695
+ num_latent_frames,
696
+ torch.float32,
697
+ device,
698
+ generator,
699
+ latents,
700
+ )
701
+
702
+ # 6. Prepare guidance condition
703
+ guidance = torch.tensor([guidance_scale] * latents.shape[0], dtype=transformer_dtype, device=device) * 1000.0
704
+
705
+ # 7. Denoising loop
706
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
707
+ self._num_timesteps = len(timesteps)
708
+
709
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
710
+ for i, t in enumerate(timesteps):
711
+ if self.interrupt:
712
+ continue
713
+
714
+ self._current_timestep = t
715
+ latent_model_input = latents.to(transformer_dtype)
716
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
717
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
718
+
719
+ if self.do_spatio_temporal_guidance:
720
+ for i in stg_applied_layers_idx:
721
+ self.transformer.transformer_blocks[i].forward = types.MethodType(forward_without_stg, self.transformer.transformer_blocks[i])
722
+
723
+ noise_pred = self.transformer(
724
+ hidden_states=latent_model_input,
725
+ timestep=timestep,
726
+ encoder_hidden_states=prompt_embeds,
727
+ encoder_attention_mask=prompt_attention_mask,
728
+ pooled_projections=pooled_prompt_embeds,
729
+ guidance=guidance,
730
+ attention_kwargs=attention_kwargs,
731
+ return_dict=False,
732
+ )[0]
733
+
734
+ if self.do_spatio_temporal_guidance:
735
+ for i in stg_applied_layers_idx:
736
+ self.transformer.transformer_blocks[i].forward = types.MethodType(forward_with_stg, self.transformer.transformer_blocks[i])
737
+
738
+ noise_pred_perturb = self.transformer(
739
+ hidden_states=latent_model_input,
740
+ timestep=timestep,
741
+ encoder_hidden_states=prompt_embeds,
742
+ encoder_attention_mask=prompt_attention_mask,
743
+ pooled_projections=pooled_prompt_embeds,
744
+ guidance=guidance,
745
+ attention_kwargs=attention_kwargs,
746
+ return_dict=False,
747
+ )[0]
748
+ noise_pred = noise_pred + self._stg_scale * (noise_pred - noise_pred_perturb)
749
+
750
+ if do_rescaling:
751
+ rescaling_scale = 0.7
752
+ factor = noise_pred_text.std() / noise_pred.std()
753
+ factor = rescaling_scale * factor + (1 - rescaling_scale)
754
+ noise_pred = noise_pred * factor
755
+
756
+ # compute the previous noisy sample x_t -> x_t-1
757
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
758
+
759
+ if callback_on_step_end is not None:
760
+ callback_kwargs = {}
761
+ for k in callback_on_step_end_tensor_inputs:
762
+ callback_kwargs[k] = locals()[k]
763
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
764
+
765
+ latents = callback_outputs.pop("latents", latents)
766
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
767
+
768
+ # call the callback, if provided
769
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
770
+ progress_bar.update()
771
+
772
+ if XLA_AVAILABLE:
773
+ xm.mark_step()
774
+
775
+ self._current_timestep = None
776
+
777
+ if not output_type == "latent":
778
+ latents = latents.to(self.vae.dtype) / self.vae.config.scaling_factor
779
+ video = self.vae.decode(latents, return_dict=False)[0]
780
+ video = self.video_processor.postprocess_video(video, output_type=output_type)
781
+ else:
782
+ video = latents
783
+
784
+ # Offload all models
785
+ self.maybe_free_model_hooks()
786
+
787
+ if not return_dict:
788
+ return (video,)
789
+
790
+ return HunyuanVideoPipelineOutput(frames=video)