{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c149f37e950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c149f37e9e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c149f37ea70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c149f37eb00>", "_build": "<function ActorCriticPolicy._build at 0x7c149f37eb90>", "forward": "<function ActorCriticPolicy.forward at 0x7c149f37ec20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c149f37ecb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c149f37ed40>", "_predict": "<function ActorCriticPolicy._predict at 0x7c149f37edd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c149f37ee60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c149f37eef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c149f37ef80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c149f3233c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1723810593727915757, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAK3BDj5815A/ILwLPz816r562N89eoM7PgAAAAAAAAAAWrjcPQcVsj+2IKM+7FLRvkoM/D1OTzo9AAAAAAAAAADm7Gm9aG31PlXQcrr1uCu+bADUvKNfuLwAAAAAAAAAAI2nEr6L0Wg/8MoZvgbzmr6nlMS9LZZePQAAAAAAAAAAABYePe9JIz/i3+G80vehvqqJy7ocDY68AAAAAAAAAABmj2K9IuaBPzIUhDtdjsS+8x8fPI4Tsz0AAAAAAAAAAMCHJT6FIfy70Mq4vRGjiT11wAo+JwCuvAAAgD8AAIA/gF+XvTg/wLtiSZA83POzPGVcEL1dupY9AACAPwAAgD9ARzs+ZepPPgZ+Nr7TazK+zjvfPDpFjLwAAAAAAAAAAJqd8rtI65W63NbBt76CsrKk/KK6ZlbgNgAAgD8AAIA/AF9NvoLVvz9wVCi/rrx3vuE8Vr4SuoG+AAAAAAAAAACmXbC+igEGP2XGTT6RGIK+pihLvVXOxD0AAAAAAAAAANMjGD69JYI/WvIDPsObAr+qjhg+/rVZPAAAAAAAAAAAMx0sPNSR4z2jatS9Axsfvv0hG7xswkw6AAAAAAAAAAASKcW+qu+DP4qZvb2pK5O+Cp+FvvGzrz0AAAAAAAAAADOHJDyxOyI/+mGBvEl8UL7Ffwi8WguaPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAyodhiLEWMAWyUTX8CjAF0lEdAn21ELtu1nnV9lChoBkdAbfDejVQQ+WgHTQUDaAhHQJ9xH1/Ue+51fZQoaAZHQG0Owqy4Wk9oB000AWgIR0Cfhw9oN/e+dX2UKGgGR0Br0azE74i5aAdNLAFoCEdAn4dhgqmTDHV9lChoBkdAbG6y44Ia+GgHTVsBaAhHQJ+HhfhMrVh1fZQoaAZHQHHoS88La25oB02NAWgIR0CfiehWYF7ldX2UKGgGR0BxFdZ3cHnmaAdNQgFoCEdAn4oLwF1SwXV9lChoBkdAbIIToMa0hWgHTTkBaAhHQJ+KFmh/RVp1fZQoaAZHQGpUEqc3EQ5oB00dAmgIR0Cfionyup0fdX2UKGgGR0BtROGucMEzaAdNYwJoCEdAn4qcAWBSUHV9lChoBkdAcQIU/OdGzGgHTWUBaAhHQJ+LYD6nBLx1fZQoaAZHQHCCHNC7btZoB01eAWgIR0CfjGJ66asqdX2UKGgGR0Bs2QvexfOVaAdNdAFoCEdAn48oOpbUw3V9lChoBkdAcSve1rqMWGgHTVABaAhHQJ+PMcbR4Ql1fZQoaAZHQHFNnfhuO0doB02AAWgIR0Cfj5tvGZNPdX2UKGgGR0BxRPWVeKKpaAdNHgFoCEdAn5ButbLU1HV9lChoBkdAbM6/EfkmyGgHTUQBaAhHQJ+TZTIeYD11fZQoaAZHQHDv4x59mYloB01tAWgIR0CflQukDZDidX2UKGgGR0BrwjFjurp8aAdNeAFoCEdAn5U4tL+PzXV9lChoBkdAcllRyOq//WgHTSUBaAhHQJ+VOIfr8ix1fZQoaAZHQGRXoRqXWvtoB03oA2gIR0CflZm9xp+MdX2UKGgGR0Bw2mYx+KCQaAdNRgFoCEdAn5XlqagElnV9lChoBkdAcEokqMFUymgHTT8BaAhHQJ+WMz41xbV1fZQoaAZHQG2+d1dPci5oB00sAWgIR0CflnHymQ8wdX2UKGgGR0BxzW2TgVGkaAdNVQFoCEdAn5aAoCuEEnV9lChoBkdAb1mj2SMcZWgHTVUBaAhHQJ+WiS0Sh8J1fZQoaAZHQG5EvEjxCppoB009AWgIR0Cfl8D+zdDZdX2UKGgGR0BxQrapPykLaAdNIgFoCEdAn5lBHww0wnV9lChoBkdAcE1t4RmK7GgHTUABaAhHQJ+auDRMN+d1fZQoaAZHQHCNlARkEs9oB02FAWgIR0CfnM/kNnXedX2UKGgGR0BtY43PzFuOaAdNZAFoCEdAn5z2kSElFHV9lChoBkdAb/zr9ETg22gHTUABaAhHQJ+eh4MWoFV1fZQoaAZHQEmDgeii7CloB00SAWgIR0Cfn0NCJGe+dX2UKGgGR0BtRoSi/O+qaAdNNgFoCEdAn5+3sXzlLnV9lChoBkdAchhyZ8a4t2gHTTQBaAhHQJ+f68IzFdd1fZQoaAZHQHFlVbaAWi1oB009AWgIR0Cfn/UWl/H6dX2UKGgGR0BudEWZZ0SzaAdNLgFoCEdAn6B6sdT5wnV9lChoBkdAV2AR/ViF02gHTegDaAhHQJ+geAUcn3N1fZQoaAZHQG89jyWiUPhoB00tAWgIR0CfoIoN/e+FdX2UKGgGR0Bwc8ZWJaaDaAdNNAFoCEdAn6C2knCwbHV9lChoBkdAcOt0LMLWqmgHTRoBaAhHQJ+hPrZ8KHB1fZQoaAZHQHCDgSamXPZoB017AWgIR0CfoZNayKNydX2UKGgGR0BwBfXWe6I4aAdNTwFoCEdAn6RCFfzBh3V9lChoBkdAbrURradtmGgHTSwBaAhHQJ+kgTWXkYJ1fZQoaAZHQHDvF6u4gA9oB004AWgIR0CfpxOpKjBVdX2UKGgGR0Bw6DPSlWOqaAdNMQFoCEdAn6jNYGMXJ3V9lChoBkdAco2fsNUfgmgHTR8BaAhHQJ+prByjpLV1fZQoaAZHQHEGQa3qiXZoB01UAmgIR0CfqpTKkl/pdX2UKGgGR0Bxhp61LJ0XaAdNQQFoCEdAn6sSl3yI6HV9lChoBkdAb8GkB0ZFX2gHTU0BaAhHQJ/APhrFfiR1fZQoaAZHQG2c+tjkMkRoB00+AWgIR0CfwKcH4XXRdX2UKGgGR0BwJeq0dBBzaAdNIAFoCEdAn8DSm65G0HV9lChoBkdAb06CNCJGfGgHTTUBaAhHQJ/BJqnFYMh1fZQoaAZHQHBCsJ+lTFVoB01UAWgIR0CfwU7pmmLtdX2UKGgGR0Bwg4TZg5R1aAdNVwFoCEdAn8FaYmb9ZXV9lChoBkdAcVMJg9eQdWgHTXEBaAhHQJ/BoH4XXRR1fZQoaAZHQG5eKv3ai9JoB01mAWgIR0Cfwct4iX6ZdX2UKGgGR0BwvIgieNDMaAdNVAFoCEdAn8W7QokRjHV9lChoBkdAM9MzZYgaFWgHS9NoCEdAn8ZQksz2vnV9lChoBkdAcbQbDdgv12gHTSsBaAhHQJ/G/8ZUDMh1fZQoaAZHQHGBcQ/X5FhoB00uAWgIR0CfySqO938odX2UKGgGR0Bxw44BFNL2aAdN0AFoCEdAn8qpmh/RV3V9lChoBkdAcPgy3Td+HGgHTUkBaAhHQJ/LGlchTwV1fZQoaAZHQHLaqT4cm0FoB00xAWgIR0Cfy8Majvd/dX2UKGgGR0Bw+/C0ngHeaAdNIAFoCEdAn8weLWI42nV9lChoBkdAb10EcKgIyGgHTUsBaAhHQJ/NTdnCfpV1fZQoaAZHQG73aiKziS9oB01FAWgIR0CfzcgSeyzHdX2UKGgGR0BxRjR1HOKPaAdNogFoCEdAn83GjGkvb3V9lChoBkdAcCVb0OEuhGgHTVMBaAhHQJ/N0ZNwiq11fZQoaAZHQG33SwwCbMJoB01UAWgIR0CfzuWDHwPRdX2UKGgGR0BssAzi0fHQaAdNbAFoCEdAn88XW8RL9XV9lChoBkdAcAdacZtNz2gHTVEBaAhHQJ/Tkqd6LO11fZQoaAZHQHCBPDgqEvloB00/AWgIR0Cf1DnnuAqedX2UKGgGR0Bw3aliz9jxaAdNDwFoCEdAn9RpPIn0CnV9lChoBkdAcjAJRO1v22gHTV0BaAhHQJ/UyX+l0o11fZQoaAZHQG/lebNKRMhoB00MAmgIR0Cf1g1U2kzodX2UKGgGR0Bw2UqtozvaaAdNLAFoCEdAn9bms/6frnV9lChoBkdAVPtzU7Sy+2gHTegDaAhHQJ/W84ffXPJ1fZQoaAZHQGv39Sde6ZpoB00gAWgIR0Cf2Ket0V8DdX2UKGgGR0Bs/2FpPAO8aAdNSAFoCEdAn9jVlsguAnV9lChoBkdAcV4BJqZc9mgHTV4BaAhHQJ/ZFpnHvMN1fZQoaAZHQHDNt3bEgntoB00mAWgIR0Cf2Up4bCJodX2UKGgGR0ByQZKzzErHaAdNUAFoCEdAn9lmyC4Bm3V9lChoBkdAcJY34Kx9omgHTTQBaAhHQJ/ZuYhMajx1fZQoaAZHQHLc6VII4VBoB00gAWgIR0Cf2hwCbMHKdX2UKGgGR0BwPlo0ygwoaAdNcgFoCEdAn9uQXIlt0nV9lChoBkdARgcophF3IWgHS/FoCEdAn91Eh/y5JHV9lChoBkdAcGG5+YtxuWgHTZUBaAhHQJ/eZkwvg3t1fZQoaAZHQHJkEf9xZMdoB01UAWgIR0Cf4SNA1NxmdX2UKGgGR0BxKZWZJCjUaAdNXAFoCEdAn+NAUUO/cnV9lChoBkdAbX1yDIzWPWgHTSwBaAhHQJ/jfmT1TR91fZQoaAZHQG+4HE/B3zNoB002AWgIR0Cf5C98JD3NdX2UKGgGR0Bt5goE0SAZaAdNXAFoCEdAn+T7iADq4nV9lChoBkdAcEqMvysjmmgHTZoBaAhHQJ/l9Gx2SuB1fZQoaAZHQHE64aYNRWNoB00hAWgIR0Cf5hndO6/ZdX2UKGgGR0BsgqMzdk8SaAdNKgFoCEdAn+YyEDhcaHV9lChoBkdAcSuuivgWJ2gHTSwBaAhHQJ/m9hVlwtJ1fZQoaAZHQHFWI1He7+VoB01XAWgIR0Cf5/g9eQdTdX2UKGgGR0Bym06Kcd5qaAdNSQFoCEdAn+gqAWi1zHV9lChoBkdAbXL4JNTLn2gHTUIBaAhHQJ/ocD7qIJt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |