ppo-LunarLander-v2 / config.json
synthmonad's picture
Upload PPO LunarLander-v2 trained agent
efc5b79 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c149f37e950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c149f37e9e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c149f37ea70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c149f37eb00>", "_build": "<function ActorCriticPolicy._build at 0x7c149f37eb90>", "forward": "<function ActorCriticPolicy.forward at 0x7c149f37ec20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c149f37ecb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c149f37ed40>", "_predict": "<function ActorCriticPolicy._predict at 0x7c149f37edd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c149f37ee60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c149f37eef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c149f37ef80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c149f3233c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1723812175881477549, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJo/0bx0TJs98syJvCfOhb7lm1a9Wr/lOwAAAAAAAAAAmqbMPGkywj9lqqw9EDy1vXXl/Dxb8vI9AAAAAAAAAABgEVU+zjTxPu6GBb5dTte+Gr4dPdwwu7wAAAAAAAAAABrpIr2Llbc+FV5FPKprir7cKUa9a+qVPQAAAAAAAAAALTorvoM49T7d9hs+AxKTvux4fbyWuYS7AAAAAAAAAACAOVU91L2GvIIguj1biA2+scLLva/fDb8AAIA/AACAP9pPY764H5M/hP+Fvjs/376XcJW+TglZPQAAAAAAAAAAgLHAPSkyQrz6aMS94rfYvIFYnz3VobI9AACAPwAAgD+z8iO9q4o4P+va0D0bl6W+ADwNPROElD0AAAAAAAAAAM3fobw0SKU/Urb7vUuSA78HR3i9NO4jvgAAAAAAAAAAs8iOvQUaVj6pQz4+RqZ/vvVRZj2oHOq8AAAAAAAAAADmFm29RV4yPihzMT7Z6l2+gKoHPR6HwzwAAAAAAAAAAM0zAT0pFGm6Gj04N7NIjjFHfAy7Kg1WtgAAgD8AAIA/KqWSPlzGij+Ou/U+XKjfvqk22D4ZfQA9AAAAAAAAAAAWEXe+B9JjP0ygir6cJ8S+H1R6vjcUmbkAAAAAAAAAAE3d7z0+saQ/Ms2VPqzSAL9rgEY+wmj3PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFIlMh5gPWMAWyUTRABjAF0lEdAsCPGDK5kLHV9lChoBkdAboK+N96Tn2gHTQsBaAhHQLAjzoePq9p1fZQoaAZHQHB2O0G/vfFoB00FAWgIR0CwI9UGqxTsdX2UKGgGR0BxJBTJhfBvaAdL72gIR0CwJBlIEr5JdX2UKGgGR0BtypYNiH6/aAdL9GgIR0CwJEhZMcp9dX2UKGgGR0BwoBRAKOT8aAdNEgFoCEdAsCSiglF+eHV9lChoBkdAO4D2rXDm82gHS7FoCEdAsCSiXyAhCHV9lChoBkdAcZe7HAAQx2gHS/toCEdAsCTDR3NcGHV9lChoBkdAblgkC3gDR2gHTQQBaAhHQLAlBUfgaWJ1fZQoaAZHQDAZptaY/mloB0vRaAhHQLAlCqABkqd1fZQoaAZHQHBKmRV6u4hoB0vpaAhHQLAlKcf/3nJ1fZQoaAZHQG+y1EuxrzpoB0v2aAhHQLAlWXg9/z91fZQoaAZHQHGhkpiI+GJoB007AWgIR0CwJZWOQyRCdX2UKGgGR0BxYfCbc45taAdNEQFoCEdAsCW9sk6cRXV9lChoBkdAcNzcZ9/jKmgHS/toCEdAsCXFp1zQu3V9lChoBkdAcFJJ6po9LmgHTSsBaAhHQLAl6y925hB1fZQoaAZHQHBl0ka/ATJoB0v2aAhHQLAl/H58BuJ1fZQoaAZHQG+Tm9g4OtpoB00LAWgIR0CwJh6fJ3gUdX2UKGgGR0Bw6OQ5myxBaAdNGAFoCEdAsCZPlV94NnV9lChoBkdAcbRaEBbOeWgHTQUBaAhHQLAmikYoAn51fZQoaAZHQHGnae05U99oB0vyaAhHQLAm6ahHskZ1fZQoaAZHQHJg35N47ihoB00mAWgIR0CwJxDf3vhIdX2UKGgGR0BwEPUDuBtlaAdNCQFoCEdAsCcnDJlrdnV9lChoBkdAchpNMGorF2gHTQUBaAhHQLAnP1U2kzp1fZQoaAZHQHHxFp48loloB0vwaAhHQLAnbkLhJiB1fZQoaAZHQHHGEkB0ZFZoB00WAWgIR0CwJ5nPeHi4dX2UKGgGR0Bv+ngxagVXaAdL82gIR0CwJ5xkEs8QdX2UKGgGR0BwWbgeii7DaAdNFgFoCEdAsCee9XcQAnV9lChoBkdAbosYvWYnfGgHS/poCEdAsCgJruYx+XV9lChoBkdAcNQiYsunM2gHTREBaAhHQLAoGYYixFB1fZQoaAZHQHDC5yEL6UJoB00WAWgIR0CwKB4qLCN0dX2UKGgGR0BsOAwM6RyPaAdNJwFoCEdAsCggpx3mm3V9lChoBkdAcwCgSvkilmgHTSIBaAhHQLAoWJMg2ZR1fZQoaAZHQHD9oGt6ol5oB00AAWgIR0CwKGDMvAXVdX2UKGgGR0BxlC13MY/FaAdL/mgIR0CwKInt8eCDdX2UKGgGR0BxK+3MINVjaAdNMgFoCEdAsCiNUhmoSHV9lChoBkdARWNe+mFajmgHS8poCEdAsCjQtTUAk3V9lChoBkdAcK4WattALWgHS+VoCEdAsCjZ8NQTEnV9lChoBkdAcVWWMju8b2gHS/1oCEdAsCjl4KQaJnV9lChoBkdAcpacsDnvD2gHTRoBaAhHQLAtoLJSzgN1fZQoaAZHQHNZjAzpHI9oB0v4aAhHQLAt8P7vXsh1fZQoaAZHQG7gyJj2BatoB0v5aAhHQLAt8Rhc7hh1fZQoaAZHQHBYM7IT4+NoB006AWgIR0CwLgVschkidX2UKGgGR0BwtFQFcIJJaAdNCwFoCEdAsC4UEkjX4HV9lChoBkdAcTAH/cWTHWgHS/9oCEdAsC540sOG03V9lChoBkdAb/kvVVghKWgHTQMBaAhHQLAuhEw35vd1fZQoaAZHQG61CEHt4RpoB00VAWgIR0CwLo/aYeDGdX2UKGgGR0Buol+so2GZaAdNGgFoCEdAsC6mSowVTXV9lChoBkdAbRSNGViWmmgHS/hoCEdAsC6v9KmKqHV9lChoBkdAcN+blzU7S2gHTR0BaAhHQLAu+pWFN+N1fZQoaAZHQG/T+7L+xW1oB00HAWgIR0CwLwBjFyaNdX2UKGgGR0BviBlpXZGsaAdL+mgIR0CwLzE/wAlwdX2UKGgGR0BxALAUL2HtaAdNAgFoCEdAsC9TzGxUvXV9lChoBkdAcgSpgTh5xGgHTTwBaAhHQLAvYscyWRl1fZQoaAZHQHJJ6jSG8EpoB0vbaAhHQLAvdD9wWFh1fZQoaAZHQHExp8jRlYloB01AAWgIR0CwL7Xpjc2zdX2UKGgGR0BxXZw2l2vCaAdNKwFoCEdAsC+1Nvfj0nV9lChoBkdAbWmIkZ75VWgHS/poCEdAsC/TO8kD6nV9lChoBkdAcvaQXAM2FWgHTQwBaAhHQLAv4qz7di51fZQoaAZHQHDPAjlgc95oB00nAWgIR0CwL/1Cw8nvdX2UKGgGR0Bxg/gGbCrMaAdL/2gIR0CwMDw6ySmqdX2UKGgGR0BxEMbZOBUaaAdL8mgIR0CwMFBHoX9BdX2UKGgGR0BzHEE0SAYpaAdNKQFoCEdAsDCRUtI07HV9lChoBkdAcxfdyksSTWgHTRQBaAhHQLAwl7TDwYt1fZQoaAZHQHGOnwCr92poB0vvaAhHQLAwn+ocaOx1fZQoaAZHQEkzG7SRbKRoB0uqaAhHQLAwn6y0KJF1fZQoaAZHQHIIJjpcHGFoB0vtaAhHQLAwoc8Tzup1fZQoaAZHQHJNf4VRDTloB01JAWgIR0CwMM4jv/ipdX2UKGgGR0BwEGOAAhjfaAdNGQFoCEdAsDFC6Ymb9nV9lChoBkdAcFucVQAMlWgHTUEBaAhHQLAxed6cAip1fZQoaAZHQHKwkt29tdloB00OAWgIR0CwMbxhH9WIdX2UKGgGR0BzQYtapxWDaAdNQQFoCEdAsDHIuFpPAXV9lChoBkdAcjAbVjI7vGgHTRgBaAhHQLAx2we/5+J1fZQoaAZHQG/iJfpljExoB00EAWgIR0CwMegK8cuKdX2UKGgGR0Bvzg/HHWBjaAdNBQFoCEdAsDIQDHOryXV9lChoBkdAbm+ih37k4mgHTTQBaAhHQLAyRd1uBMB1fZQoaAZHQHAu1ByCFsZoB0vtaAhHQLAyTsQ/X5F1fZQoaAZHQHOOvfKp1ihoB00fAWgIR0CwMq092X9jdX2UKGgGR0BukaE8JUo8aAdL9GgIR0CwMtcOG0u2dX2UKGgGR0BwAl0/4ZdfaAdL/WgIR0CwMuza0x/NdX2UKGgGR0Bu4AiA2AG0aAdNAwFoCEdAsDLwOYplSXV9lChoBkdAcdBMZxaPjmgHTR4BaAhHQLAzLe6Zpi91fZQoaAZHQHFQLamGdqdoB00iAWgIR0CwM0vaYeDGdX2UKGgGR0ByCSL74zrNaAdNJAFoCEdAsDOYy44IbHV9lChoBkdAc2bWCVbA12gHS+hoCEdAsDPTY4ACGXV9lChoBkdAcSVtXxOLzmgHTQUBaAhHQLAz52DQJHB1fZQoaAZHQG5kmjj7yhBoB00JAWgIR0CwNHNBSk0rdX2UKGgGR0BwA6nUDuBuaAdNBgFoCEdAsDR9tsN2DHV9lChoBkdAc+4IyCWeH2gHS/toCEdAsDSRH8TBZnV9lChoBkdAcLHuIRAbAGgHTR4BaAhHQLA0mEVnEl51fZQoaAZHQHKgPk7wKBxoB0v5aAhHQLA0s6r/82t1fZQoaAZHQHJW1+Vkc0doB00pAWgIR0CwNMMZpBX0dX2UKGgGR0ByInapPykLaAdL72gIR0CwNOygK4QSdX2UKGgGR0BwY0hLXcxkaAdL+mgIR0CwNRl7hNucdX2UKGgGR0BwWMLeANG3aAdL9mgIR0CwNWMJIDoydX2UKGgGR0BtOeH1vl2eaAdNAgFoCEdAsDViyRjjJnV9lChoBkdAcYps052hZmgHTSIBaAhHQLA1bvH93r51fZQoaAZHQHDtdet0V8FoB01mAWgIR0CwNXyL2pQ2dX2UKGgGR0BwwuwosqaxaAdNNgFoCEdAsDWR4RmK7HV9lChoBkdAcWBQxvegtmgHS/toCEdAsDWe90zTF3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 368, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}