synth
commited on
ppo based model for solving LunarLander
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 277.74 +/- 31.21
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c6aed3be320>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c6aed3be3b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c6aed3be440>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c6aed3be4d0>", "_build": "<function ActorCriticPolicy._build at 0x7c6aed3be560>", "forward": "<function ActorCriticPolicy.forward at 0x7c6aed3be5f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c6aed3be680>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c6aed3be710>", "_predict": "<function ActorCriticPolicy._predict at 0x7c6aed3be7a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c6aed3be830>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c6aed3be8c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c6aed3be950>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c6aed3c80c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709833840974905046, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACrekz7LFSc/7iG+vfonDL/+cJo+wBAvvgAAAAAAAAAAGoMVvbRg4z4FEvs8m5CbvkDSD71ySfk7AAAAAAAAAADNj4o9OCI3PzszEj1Koe2+R8TUPe/gA70AAAAAAAAAAFMMAz5gOf4+AfoavuVdtL4dGQ09Q5MQvgAAAAAAAAAAza5cvcKGDT42bYE9L/RLvpHlbbzK3B89AAAAAAAAAAAzCgi9sYGVPzJ0vr3KqSe/AVBFOyuh9rwAAAAAAAAAAM0KUD7UJLm85hwRO9wegbnAPym+ipNBugAAgD8AAIA/8+KJvYY0kT7rpPY9T2yNvoXno7wZ/DQ8AAAAAAAAAACa14U99x0PP6gtwb2Znqy+3xamPV0JJr4AAAAAAAAAAMZFNT5Aw44/YGVgPl7WJb8CS2I+1lYCvAAAAAAAAAAAmoP0PLwUAD0gvA+9W71NvgH7rbwJBzY9AAAAAAAAAADNK7C8eO7jPH2LWT5ELCm+g/31Pd4hp7sAAAAAAAAAAGaj+DxIBLw+UuKfvbthrr4qGK+8ddY5vAAAAAAAAAAA4LU2PvSg8D1kT0a+ldYEvvkImr2gC228AAAAAAAAAACawoY8KSQ+uitW5TLRVJ4xPoQxO5Itj7MAAIA/AACAP5oMxz2R+n4+aNXnvUy/jb4U7zS9quqMvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV9QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMAMJY1YQuMAWyUTTcBjAF0lEdAlsZ2xD9fkXV9lChoBkdAc1G3AVO9FmgHTQIBaAhHQJbIQoQWepZ1fZQoaAZHQHOeDb349HNoB0vhaAhHQJbIfA/LTx51fZQoaAZHQHEuCydFvydoB0vOaAhHQJbIvRgJC0F1fZQoaAZHQHC2fw/gR9RoB0vmaAhHQJbJEzzmOlx1fZQoaAZHQG8IYRujynVoB0voaAhHQJbJsAiml691fZQoaAZHQHJwXFglWwNoB0vaaAhHQJbJ5aC+UQl1fZQoaAZHQHDRpkTYdyVoB0vNaAhHQJbJ5JJ5E+h1fZQoaAZHQG//SntOVPhoB0vXaAhHQJbKRwn6VMV1fZQoaAZHQHJd7bHp8nhoB01WAWgIR0CWyuYNiH6/dX2UKGgGR0BxcpsoDxLCaAdNEgFoCEdAlsti1Z1V53V9lChoBkdAbhxQEZBLPGgHS+VoCEdAlsvyv9tMwnV9lChoBkdAcnYky1uzhWgHTQYBaAhHQJbMdRpDeCV1fZQoaAZHQHGlb6pHZsdoB0vjaAhHQJbMutdRiw11fZQoaAZHQHNPQAlv60poB00HAWgIR0CWzPasp5NXdX2UKGgGR0BwdkIt16mgaAdNFgFoCEdAls0RqO938nV9lChoBkdAcPHBClabF2gHS/poCEdAls2jHwPRRnV9lChoBkdATghHCoCMgmgHS6NoCEdAls5fM4cWCXV9lChoBkdAc0ZnSOR1YGgHS89oCEdAls52QOnVG3V9lChoBkdAcO+sqJ/G2mgHS9hoCEdAls58+aBqbnV9lChoBkdAcqGIRRMviGgHS+FoCEdAls6OoYNy53V9lChoBkdAcavKxcE/0WgHTQkBaAhHQJbQSqDK5kN1fZQoaAZHQHGiuglF+d9oB0veaAhHQJbQUxk/bCd1fZQoaAZHQHFmhInSfDloB0v5aAhHQJbQsCfYjB51fZQoaAZHQHKY7AgxJuloB0vHaAhHQJbQzu7YkE91fZQoaAZHQHDOC39aUzNoB00TAWgIR0CW0SV9nbqRdX2UKGgGR0ByBTOZ9d/saAdL62gIR0CW0UQl8gIQdX2UKGgGR0Bx1UkGA09AaAdLx2gIR0CW0UaUzKs/dX2UKGgGR0Bw/ErEtNBXaAdL0mgIR0CW0f0JF9a2dX2UKGgGR0BzF7EUCaJAaAdLzmgIR0CW0mhdt2s8dX2UKGgGR0ByLykKu0TlaAdLvmgIR0CW0o0TURWcdX2UKGgGR0BvTlDpkf9xaAdL7WgIR0CW0tx8D0UXdX2UKGgGR0ByipR4yGi6aAdNCwFoCEdAltPIvvjOs3V9lChoBkdAbPYeT3Zf2WgHS9toCEdAltQSAH3UQXV9lChoBkdAc166Gxlg+mgHS+doCEdAltR2OEM9bHV9lChoBkdAcoAeIVM232gHS/VoCEdAltS+ws5GSnV9lChoBkdAcm+NAC4jKWgHS+FoCEdAlusN2s7uD3V9lChoBkdAcFB4RVZLZmgHS9NoCEdAlusm0eEIxHV9lChoBkdAcDnuU2UB4mgHS9toCEdAlus/crRSg3V9lChoBkdAcwPXTEzfrWgHS+1oCEdAlutgOrhisnV9lChoBkdAcXFkOZssQWgHS91oCEdAluvMfV7QcHV9lChoBkdAcUh/D+BH1GgHS+NoCEdAluwP3vhIfHV9lChoBkdAclVSg5BC2WgHTVoBaAhHQJbsTJ9y9251fZQoaAZHQHAvcchkiEBoB0vcaAhHQJbtA8QqZtx1fZQoaAZHQHFKcTi83/BoB00OAWgIR0CW7R/MGHHndX2UKGgGR0BzNr4QBgeBaAdL1GgIR0CW7UQyRB/rdX2UKGgGR0BxkCpqASWaaAdLzmgIR0CW7tDAaef7dX2UKGgGR0By2U1+AmReaAdNJAFoCEdAlu8TLGJemnV9lChoBkdAcXKibUgB92gHS/NoCEdAlu8ieNDMNnV9lChoBkdAclAk078vVWgHS/xoCEdAlu+kMb3oLXV9lChoBkdAcT5/FBIFvGgHTQIBaAhHQJbwi4Ds+mp1fZQoaAZHQHQSeXNTtLNoB0vSaAhHQJbwlBlcyFh1fZQoaAZHQHA3v9LpRoBoB0vMaAhHQJbxIPSUkfN1fZQoaAZHQHI1vRJEpiJoB0vjaAhHQJbxHhhpg1F1fZQoaAZHQHBfXxBmf5FoB0vwaAhHQJbxpiKBNEh1fZQoaAZHQHK/MsMAmzBoB0v7aAhHQJbx0bn5i3J1fZQoaAZHQHE4ZdKNAC5oB0vlaAhHQJbyUGA08/51fZQoaAZHQHFrc/pt78hoB0v6aAhHQJbyoFeOXE91fZQoaAZHQHLxsf7rLQpoB0vhaAhHQJbzShg3Lmp1fZQoaAZHQHLPnqVyFPBoB00LAWgIR0CW9Evh60IDdX2UKGgGR0ByXp2HLzPKaAdLz2gIR0CW9XtSydFwdX2UKGgGR0BvsnrKNhmYaAdL8mgIR0CW9Z8c+7lJdX2UKGgGR0BzkYpVjqfOaAdL62gIR0CW9a+4smOVdX2UKGgGR0Bur6dz4k/saAdL9GgIR0CW9gVfeDWcdX2UKGgGR0ByxZyU9pyqaAdL1mgIR0CW936UJOWTdX2UKGgGR0BydcD/2kBTaAdL8GgIR0CW968baRISdX2UKGgGR0BxBpRMvh60aAdL5WgIR0CW9/4bS7XhdX2UKGgGR0BwQ6dqcmShaAdNAQFoCEdAlvg3MyJsPHV9lChoBkdARcmPkq+ajWgHS7VoCEdAlvhMdcSoO3V9lChoBkdAcDX0/4ZdfWgHS9poCEdAlviCRbKRuHV9lChoBkdAcX68Aq/dqWgHS+1oCEdAlvjf5tWMj3V9lChoBkdAcnrbor4FimgHS/1oCEdAlvoAvUSZjXV9lChoBkdAcjlwvg3tKWgHTQgBaAhHQJb7gY1pCa91fZQoaAZHQHDVdpqREF5oB0v9aAhHQJb8VshxHXp1fZQoaAZHQHI1TMqz7dloB0vVaAhHQJb8Ylme18d1fZQoaAZHQHD3je9Ba9toB0vzaAhHQJb9Jnyup0h1fZQoaAZHQHHUiW7e2uxoB0vxaAhHQJb9pda+vhZ1fZQoaAZHQHJItXo1UERoB00QAWgIR0CW/j+FDfFadX2UKGgGR0BwpwmdAgPmaAdL32gIR0CW/okjHGS7dX2UKGgGR0Bu0ATZg5R1aAdL32gIR0CW/riCrcTKdX2UKGgGR0BzAcPSUkfLaAdLy2gIR0CW/uPSUkfLdX2UKGgGR0Bx5C3lS0jUaAdL6GgIR0CW/1PTG5tndX2UKGgGR0BwI83gk1MuaAdL5mgIR0CW/3zNUwSKdX2UKGgGR0BxlViF0xM4aAdL32gIR0CW//IfKZDzdX2UKGgGR0BzhSsQumJnaAdL+WgIR0CXAB8Yht+DdX2UKGgGR0Bxvqcpb2UTaAdL3GgIR0CXAQVDKHO9dX2UKGgGR0BxkP5GjKxLaAdL9WgIR0CXA4v/zasZdX2UKGgGR0BkYosNDtw8aAdN6ANoCEdAlwQ8nuy/sXV9lChoBkdAcYtLkCFK02gHS9xoCEdAlwSAgcLjP3V9lChoBkdAcd/4mkWRBGgHS9xoCEdAlwUTUVi4KHV9lChoBkdAbaqWvbGm12gHTQYBaAhHQJcFJabF0gd1fZQoaAZHQHJfzbN8ma9oB00OAWgIR0CXBXMefZmJdX2UKGgGR0Bybb3sXzlLaAdL4GgIR0CXBk1iONo8dX2UKGgGR0ByRw3Ns3yaaAdL4mgIR0CXBpLmITGpdX2UKGgGR0ByhLDTBqKxaAdL2mgIR0CXBr21UlzEdX2UKGgGR0BwzshbGFSLaAdL82gIR0CXBsmUW2w3dX2UKGgGR0BxA2c2BJ7LaAdL/WgIR0CXBttUn5SFdX2UKGgGR0Bx3NMGorFwaAdL3WgIR0CXB3lKsdT6dX2UKGgGR0ByaBD7ZWaMaAdL2WgIR0CXB4mqHXVcdX2UKGgGR0ByPjFzdUKiaAdLz2gIR0CXCCBDohZAdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 368, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69aa5e0f88efe244ee2e20d1121d97fa7c5bea98ad64b28374de64aa9c3935d5
|
3 |
+
size 147980
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7c6aed3be320>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c6aed3be3b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c6aed3be440>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c6aed3be4d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7c6aed3be560>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7c6aed3be5f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7c6aed3be680>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c6aed3be710>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7c6aed3be7a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c6aed3be830>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c6aed3be8c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7c6aed3be950>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c6aed3c80c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1507328,
|
25 |
+
"_total_timesteps": 1500000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1709833840974905046,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACrekz7LFSc/7iG+vfonDL/+cJo+wBAvvgAAAAAAAAAAGoMVvbRg4z4FEvs8m5CbvkDSD71ySfk7AAAAAAAAAADNj4o9OCI3PzszEj1Koe2+R8TUPe/gA70AAAAAAAAAAFMMAz5gOf4+AfoavuVdtL4dGQ09Q5MQvgAAAAAAAAAAza5cvcKGDT42bYE9L/RLvpHlbbzK3B89AAAAAAAAAAAzCgi9sYGVPzJ0vr3KqSe/AVBFOyuh9rwAAAAAAAAAAM0KUD7UJLm85hwRO9wegbnAPym+ipNBugAAgD8AAIA/8+KJvYY0kT7rpPY9T2yNvoXno7wZ/DQ8AAAAAAAAAACa14U99x0PP6gtwb2Znqy+3xamPV0JJr4AAAAAAAAAAMZFNT5Aw44/YGVgPl7WJb8CS2I+1lYCvAAAAAAAAAAAmoP0PLwUAD0gvA+9W71NvgH7rbwJBzY9AAAAAAAAAADNK7C8eO7jPH2LWT5ELCm+g/31Pd4hp7sAAAAAAAAAAGaj+DxIBLw+UuKfvbthrr4qGK+8ddY5vAAAAAAAAAAA4LU2PvSg8D1kT0a+ldYEvvkImr2gC228AAAAAAAAAACawoY8KSQ+uitW5TLRVJ4xPoQxO5Itj7MAAIA/AACAP5oMxz2R+n4+aNXnvUy/jb4U7zS9quqMvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.004885333333333408,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV9QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMAMJY1YQuMAWyUTTcBjAF0lEdAlsZ2xD9fkXV9lChoBkdAc1G3AVO9FmgHTQIBaAhHQJbIQoQWepZ1fZQoaAZHQHOeDb349HNoB0vhaAhHQJbIfA/LTx51fZQoaAZHQHEuCydFvydoB0vOaAhHQJbIvRgJC0F1fZQoaAZHQHC2fw/gR9RoB0vmaAhHQJbJEzzmOlx1fZQoaAZHQG8IYRujynVoB0voaAhHQJbJsAiml691fZQoaAZHQHJwXFglWwNoB0vaaAhHQJbJ5aC+UQl1fZQoaAZHQHDRpkTYdyVoB0vNaAhHQJbJ5JJ5E+h1fZQoaAZHQG//SntOVPhoB0vXaAhHQJbKRwn6VMV1fZQoaAZHQHJd7bHp8nhoB01WAWgIR0CWyuYNiH6/dX2UKGgGR0BxcpsoDxLCaAdNEgFoCEdAlsti1Z1V53V9lChoBkdAbhxQEZBLPGgHS+VoCEdAlsvyv9tMwnV9lChoBkdAcnYky1uzhWgHTQYBaAhHQJbMdRpDeCV1fZQoaAZHQHGlb6pHZsdoB0vjaAhHQJbMutdRiw11fZQoaAZHQHNPQAlv60poB00HAWgIR0CWzPasp5NXdX2UKGgGR0BwdkIt16mgaAdNFgFoCEdAls0RqO938nV9lChoBkdAcPHBClabF2gHS/poCEdAls2jHwPRRnV9lChoBkdATghHCoCMgmgHS6NoCEdAls5fM4cWCXV9lChoBkdAc0ZnSOR1YGgHS89oCEdAls52QOnVG3V9lChoBkdAcO+sqJ/G2mgHS9hoCEdAls58+aBqbnV9lChoBkdAcqGIRRMviGgHS+FoCEdAls6OoYNy53V9lChoBkdAcavKxcE/0WgHTQkBaAhHQJbQSqDK5kN1fZQoaAZHQHGiuglF+d9oB0veaAhHQJbQUxk/bCd1fZQoaAZHQHFmhInSfDloB0v5aAhHQJbQsCfYjB51fZQoaAZHQHKY7AgxJuloB0vHaAhHQJbQzu7YkE91fZQoaAZHQHDOC39aUzNoB00TAWgIR0CW0SV9nbqRdX2UKGgGR0ByBTOZ9d/saAdL62gIR0CW0UQl8gIQdX2UKGgGR0Bx1UkGA09AaAdLx2gIR0CW0UaUzKs/dX2UKGgGR0Bw/ErEtNBXaAdL0mgIR0CW0f0JF9a2dX2UKGgGR0BzF7EUCaJAaAdLzmgIR0CW0mhdt2s8dX2UKGgGR0ByLykKu0TlaAdLvmgIR0CW0o0TURWcdX2UKGgGR0BvTlDpkf9xaAdL7WgIR0CW0tx8D0UXdX2UKGgGR0ByipR4yGi6aAdNCwFoCEdAltPIvvjOs3V9lChoBkdAbPYeT3Zf2WgHS9toCEdAltQSAH3UQXV9lChoBkdAc166Gxlg+mgHS+doCEdAltR2OEM9bHV9lChoBkdAcoAeIVM232gHS/VoCEdAltS+ws5GSnV9lChoBkdAcm+NAC4jKWgHS+FoCEdAlusN2s7uD3V9lChoBkdAcFB4RVZLZmgHS9NoCEdAlusm0eEIxHV9lChoBkdAcDnuU2UB4mgHS9toCEdAlus/crRSg3V9lChoBkdAcwPXTEzfrWgHS+1oCEdAlutgOrhisnV9lChoBkdAcXFkOZssQWgHS91oCEdAluvMfV7QcHV9lChoBkdAcUh/D+BH1GgHS+NoCEdAluwP3vhIfHV9lChoBkdAclVSg5BC2WgHTVoBaAhHQJbsTJ9y9251fZQoaAZHQHAvcchkiEBoB0vcaAhHQJbtA8QqZtx1fZQoaAZHQHFKcTi83/BoB00OAWgIR0CW7R/MGHHndX2UKGgGR0BzNr4QBgeBaAdL1GgIR0CW7UQyRB/rdX2UKGgGR0BxkCpqASWaaAdLzmgIR0CW7tDAaef7dX2UKGgGR0By2U1+AmReaAdNJAFoCEdAlu8TLGJemnV9lChoBkdAcXKibUgB92gHS/NoCEdAlu8ieNDMNnV9lChoBkdAclAk078vVWgHS/xoCEdAlu+kMb3oLXV9lChoBkdAcT5/FBIFvGgHTQIBaAhHQJbwi4Ds+mp1fZQoaAZHQHQSeXNTtLNoB0vSaAhHQJbwlBlcyFh1fZQoaAZHQHA3v9LpRoBoB0vMaAhHQJbxIPSUkfN1fZQoaAZHQHI1vRJEpiJoB0vjaAhHQJbxHhhpg1F1fZQoaAZHQHBfXxBmf5FoB0vwaAhHQJbxpiKBNEh1fZQoaAZHQHK/MsMAmzBoB0v7aAhHQJbx0bn5i3J1fZQoaAZHQHE4ZdKNAC5oB0vlaAhHQJbyUGA08/51fZQoaAZHQHFrc/pt78hoB0v6aAhHQJbyoFeOXE91fZQoaAZHQHLxsf7rLQpoB0vhaAhHQJbzShg3Lmp1fZQoaAZHQHLPnqVyFPBoB00LAWgIR0CW9Evh60IDdX2UKGgGR0ByXp2HLzPKaAdLz2gIR0CW9XtSydFwdX2UKGgGR0BvsnrKNhmYaAdL8mgIR0CW9Z8c+7lJdX2UKGgGR0BzkYpVjqfOaAdL62gIR0CW9a+4smOVdX2UKGgGR0Bur6dz4k/saAdL9GgIR0CW9gVfeDWcdX2UKGgGR0ByxZyU9pyqaAdL1mgIR0CW936UJOWTdX2UKGgGR0BydcD/2kBTaAdL8GgIR0CW968baRISdX2UKGgGR0BxBpRMvh60aAdL5WgIR0CW9/4bS7XhdX2UKGgGR0BwQ6dqcmShaAdNAQFoCEdAlvg3MyJsPHV9lChoBkdARcmPkq+ajWgHS7VoCEdAlvhMdcSoO3V9lChoBkdAcDX0/4ZdfWgHS9poCEdAlviCRbKRuHV9lChoBkdAcX68Aq/dqWgHS+1oCEdAlvjf5tWMj3V9lChoBkdAcnrbor4FimgHS/1oCEdAlvoAvUSZjXV9lChoBkdAcjlwvg3tKWgHTQgBaAhHQJb7gY1pCa91fZQoaAZHQHDVdpqREF5oB0v9aAhHQJb8VshxHXp1fZQoaAZHQHI1TMqz7dloB0vVaAhHQJb8Ylme18d1fZQoaAZHQHD3je9Ba9toB0vzaAhHQJb9Jnyup0h1fZQoaAZHQHHUiW7e2uxoB0vxaAhHQJb9pda+vhZ1fZQoaAZHQHJItXo1UERoB00QAWgIR0CW/j+FDfFadX2UKGgGR0BwpwmdAgPmaAdL32gIR0CW/okjHGS7dX2UKGgGR0Bu0ATZg5R1aAdL32gIR0CW/riCrcTKdX2UKGgGR0BzAcPSUkfLaAdLy2gIR0CW/uPSUkfLdX2UKGgGR0Bx5C3lS0jUaAdL6GgIR0CW/1PTG5tndX2UKGgGR0BwI83gk1MuaAdL5mgIR0CW/3zNUwSKdX2UKGgGR0BxlViF0xM4aAdL32gIR0CW//IfKZDzdX2UKGgGR0BzhSsQumJnaAdL+WgIR0CXAB8Yht+DdX2UKGgGR0Bxvqcpb2UTaAdL3GgIR0CXAQVDKHO9dX2UKGgGR0BxkP5GjKxLaAdL9WgIR0CXA4v/zasZdX2UKGgGR0BkYosNDtw8aAdN6ANoCEdAlwQ8nuy/sXV9lChoBkdAcYtLkCFK02gHS9xoCEdAlwSAgcLjP3V9lChoBkdAcd/4mkWRBGgHS9xoCEdAlwUTUVi4KHV9lChoBkdAbaqWvbGm12gHTQYBaAhHQJcFJabF0gd1fZQoaAZHQHJfzbN8ma9oB00OAWgIR0CXBXMefZmJdX2UKGgGR0Bybb3sXzlLaAdL4GgIR0CXBk1iONo8dX2UKGgGR0ByRw3Ns3yaaAdL4mgIR0CXBpLmITGpdX2UKGgGR0ByhLDTBqKxaAdL2mgIR0CXBr21UlzEdX2UKGgGR0BwzshbGFSLaAdL82gIR0CXBsmUW2w3dX2UKGgGR0BxA2c2BJ7LaAdL/WgIR0CXBttUn5SFdX2UKGgGR0Bx3NMGorFwaAdL3WgIR0CXB3lKsdT6dX2UKGgGR0ByaBD7ZWaMaAdL2WgIR0CXB4mqHXVcdX2UKGgGR0ByPjFzdUKiaAdLz2gIR0CXCCBDohZAdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 368,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08707b94c088a536ccc8e026c402c211ef7e2d4230e2ae63ca79071120156e20
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d4d8070231ea74ac297f2b66935971da4760180dc730f11118ff96f6df6c7a9
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (159 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 277.7383991, "std_reward": 31.21121307452956, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-07T18:20:24.786567"}
|