---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: pickle
model_file: voting.pickle
widget:
- structuredData:
NFS_IO_log10_MBps:
- -3.0
- -1.4805
- -3.0
local_IO_log10_MBps:
- -0.8381
- 0.0968
- -0.9018
memory_GB:
- 43.5205
- 10.3542
- 88.2232
network_log10_MBps:
- -1.1597
- 0.8827
- -0.519
---
# Model description
[More Information Needed]
## Intended uses & limitations
[More Information Needed]
## Training Procedure
[More Information Needed]
### Hyperparameters
Click to expand
| Hyperparameter | Value |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| estimators | [('rf', RandomForestClassifier(random_state=12345)), ('lr', LogisticRegression(max_iter=1000, random_state=12345)), ('sgd', SGDClassifier(random_state=12345)), ('knn', KNeighborsClassifier()), ('ada', AdaBoostClassifier(random_state=12345))] |
| flatten_transform | True |
| n_jobs | |
| verbose | False |
| voting | hard |
| weights | |
| rf | RandomForestClassifier(random_state=12345) |
| lr | LogisticRegression(max_iter=1000, random_state=12345) |
| sgd | SGDClassifier(random_state=12345) |
| knn | KNeighborsClassifier() |
| ada | AdaBoostClassifier(random_state=12345) |
| rf__bootstrap | True |
| rf__ccp_alpha | 0.0 |
| rf__class_weight | |
| rf__criterion | gini |
| rf__max_depth | |
| rf__max_features | sqrt |
| rf__max_leaf_nodes | |
| rf__max_samples | |
| rf__min_impurity_decrease | 0.0 |
| rf__min_samples_leaf | 1 |
| rf__min_samples_split | 2 |
| rf__min_weight_fraction_leaf | 0.0 |
| rf__monotonic_cst | |
| rf__n_estimators | 100 |
| rf__n_jobs | |
| rf__oob_score | False |
| rf__random_state | 12345 |
| rf__verbose | 0 |
| rf__warm_start | False |
| lr__C | 1.0 |
| lr__class_weight | |
| lr__dual | False |
| lr__fit_intercept | True |
| lr__intercept_scaling | 1 |
| lr__l1_ratio | |
| lr__max_iter | 1000 |
| lr__multi_class | deprecated |
| lr__n_jobs | |
| lr__penalty | l2 |
| lr__random_state | 12345 |
| lr__solver | lbfgs |
| lr__tol | 0.0001 |
| lr__verbose | 0 |
| lr__warm_start | False |
| sgd__alpha | 0.0001 |
| sgd__average | False |
| sgd__class_weight | |
| sgd__early_stopping | False |
| sgd__epsilon | 0.1 |
| sgd__eta0 | 0.0 |
| sgd__fit_intercept | True |
| sgd__l1_ratio | 0.15 |
| sgd__learning_rate | optimal |
| sgd__loss | hinge |
| sgd__max_iter | 1000 |
| sgd__n_iter_no_change | 5 |
| sgd__n_jobs | |
| sgd__penalty | l2 |
| sgd__power_t | 0.5 |
| sgd__random_state | 12345 |
| sgd__shuffle | True |
| sgd__tol | 0.001 |
| sgd__validation_fraction | 0.1 |
| sgd__verbose | 0 |
| sgd__warm_start | False |
| knn__algorithm | auto |
| knn__leaf_size | 30 |
| knn__metric | minkowski |
| knn__metric_params | |
| knn__n_jobs | |
| knn__n_neighbors | 5 |
| knn__p | 2 |
| knn__weights | uniform |
| ada__algorithm | deprecated |
| ada__estimator | |
| ada__learning_rate | 1.0 |
| ada__n_estimators | 50 |
| ada__random_state | 12345 |
VotingClassifier(estimators=[('rf', RandomForestClassifier(random_state=12345)),('lr',LogisticRegression(max_iter=1000,random_state=12345)),('sgd', SGDClassifier(random_state=12345)),('knn', KNeighborsClassifier()),('ada', AdaBoostClassifier(random_state=12345))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
VotingClassifier(estimators=[('rf', RandomForestClassifier(random_state=12345)),('lr',LogisticRegression(max_iter=1000,random_state=12345)),('sgd', SGDClassifier(random_state=12345)),('knn', KNeighborsClassifier()),('ada', AdaBoostClassifier(random_state=12345))])
RandomForestClassifier(random_state=12345)
LogisticRegression(max_iter=1000, random_state=12345)
SGDClassifier(random_state=12345)
KNeighborsClassifier()
AdaBoostClassifier(random_state=12345)