--- library_name: sklearn tags: - sklearn - skops - tabular-classification model_format: pickle model_file: voting.pickle widget: - structuredData: NFS_IO_log10_MBps: - -3.0 - -1.4805 - -3.0 local_IO_log10_MBps: - -0.8381 - 0.0968 - -0.9018 memory_GB: - 43.5205 - 10.3542 - 88.2232 network_log10_MBps: - -1.1597 - 0.8827 - -0.519 --- # Model description [More Information Needed] ## Intended uses & limitations [More Information Needed] ## Training Procedure [More Information Needed] ### Hyperparameters
Click to expand | Hyperparameter | Value | |------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | estimators | [('rf', RandomForestClassifier(random_state=12345)), ('lr', LogisticRegression(max_iter=1000, random_state=12345)), ('sgd', SGDClassifier(random_state=12345)), ('knn', KNeighborsClassifier()), ('ada', AdaBoostClassifier(random_state=12345))] | | flatten_transform | True | | n_jobs | | | verbose | False | | voting | hard | | weights | | | rf | RandomForestClassifier(random_state=12345) | | lr | LogisticRegression(max_iter=1000, random_state=12345) | | sgd | SGDClassifier(random_state=12345) | | knn | KNeighborsClassifier() | | ada | AdaBoostClassifier(random_state=12345) | | rf__bootstrap | True | | rf__ccp_alpha | 0.0 | | rf__class_weight | | | rf__criterion | gini | | rf__max_depth | | | rf__max_features | sqrt | | rf__max_leaf_nodes | | | rf__max_samples | | | rf__min_impurity_decrease | 0.0 | | rf__min_samples_leaf | 1 | | rf__min_samples_split | 2 | | rf__min_weight_fraction_leaf | 0.0 | | rf__monotonic_cst | | | rf__n_estimators | 100 | | rf__n_jobs | | | rf__oob_score | False | | rf__random_state | 12345 | | rf__verbose | 0 | | rf__warm_start | False | | lr__C | 1.0 | | lr__class_weight | | | lr__dual | False | | lr__fit_intercept | True | | lr__intercept_scaling | 1 | | lr__l1_ratio | | | lr__max_iter | 1000 | | lr__multi_class | deprecated | | lr__n_jobs | | | lr__penalty | l2 | | lr__random_state | 12345 | | lr__solver | lbfgs | | lr__tol | 0.0001 | | lr__verbose | 0 | | lr__warm_start | False | | sgd__alpha | 0.0001 | | sgd__average | False | | sgd__class_weight | | | sgd__early_stopping | False | | sgd__epsilon | 0.1 | | sgd__eta0 | 0.0 | | sgd__fit_intercept | True | | sgd__l1_ratio | 0.15 | | sgd__learning_rate | optimal | | sgd__loss | hinge | | sgd__max_iter | 1000 | | sgd__n_iter_no_change | 5 | | sgd__n_jobs | | | sgd__penalty | l2 | | sgd__power_t | 0.5 | | sgd__random_state | 12345 | | sgd__shuffle | True | | sgd__tol | 0.001 | | sgd__validation_fraction | 0.1 | | sgd__verbose | 0 | | sgd__warm_start | False | | knn__algorithm | auto | | knn__leaf_size | 30 | | knn__metric | minkowski | | knn__metric_params | | | knn__n_jobs | | | knn__n_neighbors | 5 | | knn__p | 2 | | knn__weights | uniform | | ada__algorithm | deprecated | | ada__estimator | | | ada__learning_rate | 1.0 | | ada__n_estimators | 50 | | ada__random_state | 12345 |
### Model Plot
VotingClassifier(estimators=[('rf', RandomForestClassifier(random_state=12345)),('lr',LogisticRegression(max_iter=1000,random_state=12345)),('sgd', SGDClassifier(random_state=12345)),('knn', KNeighborsClassifier()),('ada', AdaBoostClassifier(random_state=12345))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
## Evaluation Results [More Information Needed] # How to Get Started with the Model [More Information Needed] # Model Card Authors This model card is written by following authors: [More Information Needed] # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ``` # citation_bibtex to be done # get_started_code None # model_card_authors Syreeta, Shraddha, Sravani, Sadhana, Ranjitha # limitations Not handling logs # model_description Failure prediction and remediation