Upload config.yml
Browse files- config.yml +79 -0
config.yml
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# This is the hyperparameter configuration file for FastSpeech2 v1.
|
| 2 |
+
# Please make sure this is adjusted for the KSS dataset. If you want to
|
| 3 |
+
# apply to the other dataset, you might need to carefully change some parameters.
|
| 4 |
+
# This configuration performs 200k iters but a best checkpoint is around 150k iters.
|
| 5 |
+
|
| 6 |
+
###########################################################
|
| 7 |
+
# FEATURE EXTRACTION SETTING #
|
| 8 |
+
###########################################################
|
| 9 |
+
hop_size: 256
|
| 10 |
+
format: "npy"
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
###########################################################
|
| 14 |
+
# NETWORK ARCHITECTURE SETTING #
|
| 15 |
+
###########################################################
|
| 16 |
+
model_type: "fastspeech2"
|
| 17 |
+
|
| 18 |
+
fastspeech2_params:
|
| 19 |
+
dataset: "kss"
|
| 20 |
+
n_speakers: 1
|
| 21 |
+
encoder_hidden_size: 384
|
| 22 |
+
encoder_num_hidden_layers: 4
|
| 23 |
+
encoder_num_attention_heads: 2
|
| 24 |
+
encoder_attention_head_size: 192 # hidden_size // num_attention_heads
|
| 25 |
+
encoder_intermediate_size: 1024
|
| 26 |
+
encoder_intermediate_kernel_size: 3
|
| 27 |
+
encoder_hidden_act: "mish"
|
| 28 |
+
decoder_hidden_size: 384
|
| 29 |
+
decoder_num_hidden_layers: 4
|
| 30 |
+
decoder_num_attention_heads: 2
|
| 31 |
+
decoder_attention_head_size: 192 # hidden_size // num_attention_heads
|
| 32 |
+
decoder_intermediate_size: 1024
|
| 33 |
+
decoder_intermediate_kernel_size: 3
|
| 34 |
+
decoder_hidden_act: "mish"
|
| 35 |
+
variant_prediction_num_conv_layers: 2
|
| 36 |
+
variant_predictor_filter: 256
|
| 37 |
+
variant_predictor_kernel_size: 3
|
| 38 |
+
variant_predictor_dropout_rate: 0.5
|
| 39 |
+
num_mels: 80
|
| 40 |
+
hidden_dropout_prob: 0.2
|
| 41 |
+
attention_probs_dropout_prob: 0.1
|
| 42 |
+
max_position_embeddings: 2048
|
| 43 |
+
initializer_range: 0.02
|
| 44 |
+
output_attentions: False
|
| 45 |
+
output_hidden_states: False
|
| 46 |
+
|
| 47 |
+
###########################################################
|
| 48 |
+
# DATA LOADER SETTING #
|
| 49 |
+
###########################################################
|
| 50 |
+
batch_size: 16 # Batch size for each GPU with assuming that gradient_accumulation_steps == 1.
|
| 51 |
+
remove_short_samples: true # Whether to remove samples the length of which are less than batch_max_steps.
|
| 52 |
+
allow_cache: true # Whether to allow cache in dataset. If true, it requires cpu memory.
|
| 53 |
+
mel_length_threshold: 32 # remove all targets has mel_length <= 32
|
| 54 |
+
is_shuffle: true # shuffle dataset after each epoch.
|
| 55 |
+
###########################################################
|
| 56 |
+
# OPTIMIZER & SCHEDULER SETTING #
|
| 57 |
+
###########################################################
|
| 58 |
+
optimizer_params:
|
| 59 |
+
initial_learning_rate: 0.001
|
| 60 |
+
end_learning_rate: 0.00005
|
| 61 |
+
decay_steps: 150000 # < train_max_steps is recommend.
|
| 62 |
+
warmup_proportion: 0.02
|
| 63 |
+
weight_decay: 0.001
|
| 64 |
+
|
| 65 |
+
gradient_accumulation_steps: 1
|
| 66 |
+
var_train_expr: null # trainable variable expr (eg. 'embeddings|encoder|decoder' )
|
| 67 |
+
# must separate by |. if var_train_expr is null then we
|
| 68 |
+
# training all variable
|
| 69 |
+
###########################################################
|
| 70 |
+
# INTERVAL SETTING #
|
| 71 |
+
###########################################################
|
| 72 |
+
train_max_steps: 200000 # Number of training steps.
|
| 73 |
+
save_interval_steps: 5000 # Interval steps to save checkpoint.
|
| 74 |
+
eval_interval_steps: 500 # Interval steps to evaluate the network.
|
| 75 |
+
log_interval_steps: 200 # Interval steps to record the training log.
|
| 76 |
+
###########################################################
|
| 77 |
+
# OTHER SETTING #
|
| 78 |
+
###########################################################
|
| 79 |
+
num_save_intermediate_results: 1 # Number of batch to be saved as intermediate results.
|