metadata
base_model: pints-ai/1.5-Pints-16K-v0.1
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: tangledgroup/tangled-llama-pints-1.5b-v0.2-instruct
results: []
datasets:
- tangledgroup/tangled-llama-pints-1.5b-v0.2-dataset
See axolotl config
axolotl version: 0.4.1
base_model: pints-ai/1.5-Pints-16K-v0.1
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: tangledgroup/tangled-llama-pints-1.5b-v0.2-dataset
type: sharegpt
conversation: chatml
chat_template: chatml
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/qlora-out
adapter: qlora
lora_model_dir:
sequence_len: 16384
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: paged_adamw_32bit
# optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 15.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 3
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
outputs/qlora-out
This model is a fine-tuned version of pints-ai/1.5-Pints-16K-v0.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9847
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.1396 | 0.0011 | 1 | 1.1313 |
1.0777 | 0.3332 | 295 | 1.0278 |
1.0219 | 0.6665 | 590 | 1.0119 |
1.0006 | 0.9997 | 885 | 1.0020 |
1.0385 | 1.3307 | 1180 | 0.9954 |
0.9405 | 1.6639 | 1475 | 0.9902 |
0.9249 | 1.9972 | 1770 | 0.9867 |
0.9951 | 2.3282 | 2065 | 0.9856 |
0.9713 | 2.6616 | 2360 | 0.9848 |
0.9576 | 2.9949 | 2655 | 0.9847 |
Framework versions
- PEFT 0.12.0
- Transformers 4.45.0.dev0
- Pytorch 2.4.1
- Datasets 2.21.0
- Tokenizers 0.19.1
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 4.66 |
IFEval (0-Shot) | 17.24 |
BBH (3-Shot) | 4.08 |
MATH Lvl 5 (4-Shot) | 0.76 |
GPQA (0-shot) | 0.00 |
MuSR (0-shot) | 4.57 |
MMLU-PRO (5-shot) | 1.30 |