--- license: mit library_name: peft tags: - generated_from_trainer base_model: pints-ai/1.5-Pints-16K-v0.1 model-index: - name: tangledgroup/tangled-llama-pints-1.5b-v0.2-instruct results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: pints-ai/1.5-Pints-16K-v0.1 model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true strict: false datasets: - path: tangledgroup/tangled-llama-pints-1.5b-v0.2-dataset type: sharegpt conversation: chatml chat_template: chatml dataset_prepared_path: val_set_size: 0.05 output_dir: ./outputs/qlora-out adapter: qlora lora_model_dir: sequence_len: 16384 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 3 optimizer: paged_adamw_32bit # optimizer: adamw_torch_fused lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 15.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 3 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true ```

# outputs/qlora-out This model is a fine-tuned version of [pints-ai/1.5-Pints-16K-v0.1](https://huggingface.co/pints-ai/1.5-Pints-16K-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9847 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1396 | 0.0011 | 1 | 1.1313 | | 1.0777 | 0.3332 | 295 | 1.0278 | | 1.0219 | 0.6665 | 590 | 1.0119 | | 1.0006 | 0.9997 | 885 | 1.0020 | | 1.0385 | 1.3307 | 1180 | 0.9954 | | 0.9405 | 1.6639 | 1475 | 0.9902 | | 0.9249 | 1.9972 | 1770 | 0.9867 | | 0.9951 | 2.3282 | 2065 | 0.9856 | | 0.9713 | 2.6616 | 2360 | 0.9848 | | 0.9576 | 2.9949 | 2655 | 0.9847 | ### Framework versions - PEFT 0.12.0 - Transformers 4.45.0.dev0 - Pytorch 2.4.1 - Datasets 2.21.0 - Tokenizers 0.19.1 # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_tangledgroup__tangled-llama-pints-1.5b-v0.2-instruct) | Metric |Value| |-------------------|----:| |Avg. | 4.66| |IFEval (0-Shot) |17.24| |BBH (3-Shot) | 4.08| |MATH Lvl 5 (4-Shot)| 0.76| |GPQA (0-shot) | 0.00| |MuSR (0-shot) | 4.57| |MMLU-PRO (5-shot) | 1.30|