--- base_model: zhihan1996/DNABERT-2-117M tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: DNABERT-2-117M_ft_BioS2_1kbpHG19_DHSs_H3K27AC results: [] --- # DNABERT-2-117M_ft_BioS2_1kbpHG19_DHSs_H3K27AC This model is a fine-tuned version of [zhihan1996/DNABERT-2-117M](https://huggingface.co/zhihan1996/DNABERT-2-117M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4620 - F1 Score: 0.7974 - Precision: 0.8134 - Recall: 0.7819 - Accuracy: 0.7933 - Auc: 0.8741 - Prc: 0.8601 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision | Recall | Accuracy | Auc | Prc | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|:------:|:------:| | 0.706 | 0.1680 | 500 | 0.6216 | 0.6107 | 0.7600 | 0.5105 | 0.6616 | 0.7690 | 0.7525 | | 0.614 | 0.3360 | 1000 | 0.5784 | 0.7600 | 0.6685 | 0.8805 | 0.7108 | 0.7836 | 0.7638 | | 0.5795 | 0.5040 | 1500 | 0.5409 | 0.7576 | 0.6964 | 0.8307 | 0.7236 | 0.7938 | 0.7723 | | 0.557 | 0.6720 | 2000 | 0.5898 | 0.7622 | 0.6293 | 0.9661 | 0.6864 | 0.8063 | 0.7838 | | 0.561 | 0.8401 | 2500 | 0.5143 | 0.7770 | 0.7298 | 0.8307 | 0.7520 | 0.8183 | 0.7953 | | 0.5313 | 1.0081 | 3000 | 0.4928 | 0.7958 | 0.7300 | 0.8746 | 0.7666 | 0.8334 | 0.8096 | | 0.5167 | 1.1761 | 3500 | 0.5086 | 0.7590 | 0.7963 | 0.7250 | 0.7605 | 0.8471 | 0.8266 | | 0.5052 | 1.3441 | 4000 | 0.4732 | 0.8021 | 0.7578 | 0.8520 | 0.7814 | 0.8533 | 0.8327 | | 0.4923 | 1.5121 | 4500 | 0.4741 | 0.7898 | 0.7864 | 0.7932 | 0.7804 | 0.8572 | 0.8386 | | 0.493 | 1.6801 | 5000 | 0.4683 | 0.7821 | 0.7995 | 0.7654 | 0.7782 | 0.8618 | 0.8431 | | 0.4834 | 1.8481 | 5500 | 0.4522 | 0.8100 | 0.7702 | 0.8543 | 0.7916 | 0.8638 | 0.8465 | | 0.4871 | 2.0161 | 6000 | 0.4527 | 0.8160 | 0.7475 | 0.8982 | 0.7893 | 0.8665 | 0.8500 | | 0.457 | 2.1841 | 6500 | 0.6625 | 0.7653 | 0.6231 | 0.9916 | 0.6838 | 0.8679 | 0.8530 | | 0.4685 | 2.3522 | 7000 | 0.5230 | 0.7281 | 0.8393 | 0.6430 | 0.7503 | 0.8681 | 0.8521 | | 0.4567 | 2.5202 | 7500 | 0.4433 | 0.8198 | 0.7557 | 0.8956 | 0.7952 | 0.8702 | 0.8533 | | 0.4506 | 2.6882 | 8000 | 0.4520 | 0.8208 | 0.7520 | 0.9034 | 0.7948 | 0.8721 | 0.8580 | | 0.4443 | 2.8562 | 8500 | 0.4590 | 0.8029 | 0.7963 | 0.8097 | 0.7933 | 0.8730 | 0.8581 | | 0.4433 | 3.0242 | 9000 | 0.5848 | 0.7530 | 0.8380 | 0.6837 | 0.7668 | 0.8738 | 0.8592 | | 0.4355 | 3.1922 | 9500 | 0.4620 | 0.7974 | 0.8134 | 0.7819 | 0.7933 | 0.8741 | 0.8601 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.18.0 - Tokenizers 0.19.0