ppo-LunarLander-v2 / config.json
taohoang's picture
Upload PPO LunarLander-v2 trained agent
c6e9a9e
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8ed08ee280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8ed08ee310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8ed08ee3a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8ed08ee430>", "_build": "<function ActorCriticPolicy._build at 0x7f8ed08ee4c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f8ed08ee550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8ed08ee5e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8ed08ee670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8ed08ee700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8ed08ee790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8ed08ee820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8ed08ee8b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8ed08eda00>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679013716788579637, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMArFb7sGY65eAOHuunHibYlnlE76f+fOQAAgD8AAIA/cyidPSl4cbolvKG6r52TtUQ+TDqDXr05AACAPwAAgD+a83K9BasWP+1RSr324pK+yWYfvJBx1TwAAAAAAAAAABr8uD0Qag4/Aiopvg2hgb74h5+8hA4SvQAAAAAAAAAAWleIvbg2r7kWEhA8vbp7NOSIQzsoZ4szAAAAAAAAgD/mKA69e16fumdWhDqz0Aw2FcFhur+UmLkAAIA/AACAPwBTKj3DVWe6FoEhudOPDrS4Cwa7Wqs9OAAAgD8AAIA/ANebvRSGjbqjwbW60/YktvoQIjvSrs85AACAPwAAgD8zw/y8SE+butVWaLqA52y1gueHOmoAhjkAAIA/AACAPwAWV71I95u6s9tXug9JPjbWwSe6aIR4OQAAgD8AAIA/M+ravZHqYj9tbtq9s2TwvqdFnL0QnhW8AAAAAAAAAAAAb+W8XN8Rulavr7pEeCo0tiUvu7/HzDkAAIA/AACAP5rimLxIZ4+6UoGPOA1HhjNTcuA6sommtwAAgD8AAIA/5jeyvfZgMLpKd8Q68brhNv1JCjv7F/e5AACAPwAAgD8A1Xg9w617uievqjuJiX42A4sxu2j8bTUAAIA/AACAPw3lyL32wGy685c4OlWTljVAjII7KhdWuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIm5DWGHRiL0CUhpRSlIwBbJRL54wBdJRHQJEuN+TeO4p1fZQoaAZoCWgPQwiE2JlC5+VjQJSGlFKUaBVN6ANoFkdAkU4jHKfWc3V9lChoBmgJaA9DCAd96e1P5WRAlIaUUpRoFU3oA2gWR0CRX4VymygPdX2UKGgGaAloD0MIvhHds676ZkCUhpRSlGgVTegDaBZHQJFhDzFuNxV1fZQoaAZoCWgPQwjm5bD7DghgQJSGlFKUaBVN6ANoFkdAkWf/JaJQ+HV9lChoBmgJaA9DCEYL0LaaMWRAlIaUUpRoFU3oA2gWR0CRbha99MK1dX2UKGgGaAloD0MIAWpq2drcYUCUhpRSlGgVTegDaBZHQJFv+rELpiZ1fZQoaAZoCWgPQwgSvCGNCsZiQJSGlFKUaBVN6ANoFkdAkXWkEPlMiHV9lChoBmgJaA9DCAlszsEzF2lAlIaUUpRoFU3oA2gWR0CRdcE0BOpLdX2UKGgGaAloD0MInKVkOYnOYkCUhpRSlGgVTegDaBZHQJF5CBFuvU11fZQoaAZoCWgPQwgddXRcjZlhQJSGlFKUaBVN6ANoFkdAkXx36uW8iHV9lChoBmgJaA9DCCVYHM78DmBAlIaUUpRoFU3oA2gWR0CRfU2U0Nz9dX2UKGgGaAloD0MIb0p5rYS+XkCUhpRSlGgVTegDaBZHQJF+GvFFUhp1fZQoaAZoCWgPQwgVAU7vYiBjQJSGlFKUaBVN6ANoFkdAkX/Umx+rl3V9lChoBmgJaA9DCP58W7BULGdAlIaUUpRoFU3oA2gWR0CRgMUwSJ0odX2UKGgGaAloD0MI/OB86lhrYUCUhpRSlGgVTegDaBZHQJGBM/qxC6Z1fZQoaAZoCWgPQwiMaDumbiFlQJSGlFKUaBVN6ANoFkdAkYGMCcPOIXV9lChoBmgJaA9DCOyhfazgVV9AlIaUUpRoFU3oA2gWR0CRi7SA6MisdX2UKGgGaAloD0MIgVt381T3Y0CUhpRSlGgVTegDaBZHQJGyExDb8FZ1fZQoaAZoCWgPQwhCPujZLK1iQJSGlFKUaBVN6ANoFkdAkbMRmbsniXV9lChoBmgJaA9DCCOHiJvTs2VAlIaUUpRoFU3oA2gWR0CRt62Dxsl+dX2UKGgGaAloD0MIezGUE207Y0CUhpRSlGgVTegDaBZHQJG7xgtvn8t1fZQoaAZoCWgPQwjOM/YlG1hnQJSGlFKUaBVN6ANoFkdAkb23eWOZLXV9lChoBmgJaA9DCL/TZMZb9WJAlIaUUpRoFU3oA2gWR0CRxAQxvegtdX2UKGgGaAloD0MIl+MViJ5rYkCUhpRSlGgVTegDaBZHQJHEJYOlO451fZQoaAZoCWgPQwj2mbM+5edeQJSGlFKUaBVN6ANoFkdAkcgEwaisXHV9lChoBmgJaA9DCDblCu9yWWJAlIaUUpRoFU3oA2gWR0CRzB9vCMxXdX2UKGgGaAloD0MI1zGuuLjFZkCUhpRSlGgVTegDaBZHQJHNG9alk6N1fZQoaAZoCWgPQwhwJqYLMW9hQJSGlFKUaBVN6ANoFkdAkc4l0knkUHV9lChoBmgJaA9DCGWPUDOk32hAlIaUUpRoFU3oA2gWR0CR0GgZjx0/dX2UKGgGaAloD0MIpKfIIeIXX0CUhpRSlGgVTegDaBZHQJHR8lZ5iVl1fZQoaAZoCWgPQwik5NU5hkBhQJSGlFKUaBVN6ANoFkdAkdKqLKmsNnV9lChoBmgJaA9DCGNjXkecB2NAlIaUUpRoFU3oA2gWR0CR0yxDLKV6dX2UKGgGaAloD0MIFR3J5b83ZUCUhpRSlGgVTegDaBZHQJHjlgQYk3V1fZQoaAZoCWgPQwgXKZSFr71BQJSGlFKUaBVL6WgWR0CR5KTaCcwydX2UKGgGaAloD0MIjqz8MpjCbUCUhpRSlGgVTcwBaBZHQJIDe6d1+y91fZQoaAZoCWgPQwiUbHU5JUdiQJSGlFKUaBVN6ANoFkdAkgPciOearnV9lChoBmgJaA9DCOdxGMxfDWFAlIaUUpRoFU3oA2gWR0CSBMq5byH3dX2UKGgGaAloD0MIFytqMI0LY0CUhpRSlGgVTegDaBZHQJIJHUMG5c11fZQoaAZoCWgPQwi2TIbjeSpiQJSGlFKUaBVN6ANoFkdAkg0Ed7v5QHV9lChoBmgJaA9DCEq3JXJB2WRAlIaUUpRoFU3oA2gWR0CSD13ocJdCdX2UKGgGaAloD0MIeT9uv/z5YUCUhpRSlGgVTegDaBZHQJIXJLTQVsV1fZQoaAZoCWgPQwh3oE55dEdiQJSGlFKUaBVN6ANoFkdAkhdOvt+kQHV9lChoBmgJaA9DCLq+DweJ4GdAlIaUUpRoFU3oA2gWR0CSG9UB4lhPdX2UKGgGaAloD0MIQPhQoiXrZ0CUhpRSlGgVTegDaBZHQJIgdkUbkwN1fZQoaAZoCWgPQwinID8bubFkQJSGlFKUaBVN6ANoFkdAkiE1qveP73V9lChoBmgJaA9DCBi1+1WAUl5AlIaUUpRoFU3oA2gWR0CSIfTVUdaMdX2UKGgGaAloD0MIkgThCiisYECUhpRSlGgVTegDaBZHQJIjsdn003x1fZQoaAZoCWgPQwhYqgt4mSFeQJSGlFKUaBVN6ANoFkdAkiUd03fhuXV9lChoBmgJaA9DCOrOE8/ZQmFAlIaUUpRoFU3oA2gWR0CSMC0+kgwHdX2UKGgGaAloD0MIejcWFIa+Y0CUhpRSlGgVTegDaBZHQJIxADyOJch1fZQoaAZoCWgPQwiVm6iluVhtQJSGlFKUaBVNggFoFkdAkkaaasp5NXV9lChoBmgJaA9DCFK2SNqNMFxAlIaUUpRoFU3oA2gWR0CSUYsSTQmedX2UKGgGaAloD0MIBmNEotAIZUCUhpRSlGgVTegDaBZHQJJR/pnpSrJ1fZQoaAZoCWgPQwjyRBDn4S1lQJSGlFKUaBVN6ANoFkdAklMqMFUyYXV9lChoBmgJaA9DCNMx5xn7P2JAlIaUUpRoFU3oA2gWR0CSWHzUqhDgdX2UKGgGaAloD0MIUS0iiknCYUCUhpRSlGgVTegDaBZHQJJc2FrVOKx1fZQoaAZoCWgPQwhywRn8/X1jQJSGlFKUaBVN6ANoFkdAkl5VWn0kGHV9lChoBmgJaA9DCLvTnSeeAWdAlIaUUpRoFU3oA2gWR0CSYxYv38GcdX2UKGgGaAloD0MIgAwdO6isYUCUhpRSlGgVTegDaBZHQJJjMbxVhkR1fZQoaAZoCWgPQwif508bVRVhQJSGlFKUaBVN6ANoFkdAkmYLVWjoIXV9lChoBmgJaA9DCMTouYWusF5AlIaUUpRoFU3oA2gWR0CSaVOUMXrMdX2UKGgGaAloD0MIAhB39aomZECUhpRSlGgVTegDaBZHQJJrHvDxb0R1fZQoaAZoCWgPQwgiwVQza5BhQJSGlFKUaBVN6ANoFkdAkm0bFKkEcXV9lChoBmgJaA9DCM5xbhNu72VAlIaUUpRoFU3oA2gWR0CSbqKpDNQkdX2UKGgGaAloD0MIP3Jr0m2HZUCUhpRSlGgVTegDaBZHQJJ6ZRdhRZV1fZQoaAZoCWgPQwgRxeQNMNBgQJSGlFKUaBVN6ANoFkdAknsnUH6dlXV9lChoBmgJaA9DCMNEgxQ8l2RAlIaUUpRoFU3oA2gWR0CSfnsmv4dqdX2UKGgGaAloD0MIFEIHXUJaZECUhpRSlGgVTegDaBZHQJKfS7dznzR1fZQoaAZoCWgPQwjJq3MMyD1hQJSGlFKUaBVN6ANoFkdAkp+ma2F36nV9lChoBmgJaA9DCKG5TiOtLWBAlIaUUpRoFU3oA2gWR0CSoIhew9q2dX2UKGgGaAloD0MICfoLPWKcZECUhpRSlGgVTegDaBZHQJKktJEpiJB1fZQoaAZoCWgPQwiHpYEfVXdiQJSGlFKUaBVN6ANoFkdAkqi9RJmNBHV9lChoBmgJaA9DCBCyLJh4qWJAlIaUUpRoFU3oA2gWR0CSqo+aScLCdX2UKGgGaAloD0MINWPRdHY5ZUCUhpRSlGgVTegDaBZHQJKwBz7uUll1fZQoaAZoCWgPQwiRf2YQH9liQJSGlFKUaBVN6ANoFkdAkrAkZJkGzXV9lChoBmgJaA9DCORKPQvCfGFAlIaUUpRoFU3oA2gWR0CSs5dj5KvndX2UKGgGaAloD0MIxF+TNWofYkCUhpRSlGgVTegDaBZHQJK3aPhhpg11fZQoaAZoCWgPQwiARunSv3hkQJSGlFKUaBVN6ANoFkdAkrlK9TP0I3V9lChoBmgJaA9DCO832nHDCGdAlIaUUpRoFU3oA2gWR0CSu2lnh86WdX2UKGgGaAloD0MILCgMyjQqXkCUhpRSlGgVTegDaBZHQJK88TWXkYJ1fZQoaAZoCWgPQwgdAHFXLyFkQJSGlFKUaBVN6ANoFkdAks5XpfQa73V9lChoBmgJaA9DCEhRZ+6hL2ZAlIaUUpRoFU3oA2gWR0CSz3X531SPdX2UKGgGaAloD0MIweRGkbW1YkCUhpRSlGgVTegDaBZHQJLS5LDhtLt1fZQoaAZoCWgPQwjg1XJnJhtnQJSGlFKUaBVN6ANoFkdAku4+M+/xlXV9lChoBmgJaA9DCAqgGFmy22BAlIaUUpRoFU3oA2gWR0CS7phvitJWdX2UKGgGaAloD0MIz4b8M4N4Z0CUhpRSlGgVTegDaBZHQJLvc2sJY1Z1fZQoaAZoCWgPQwiMLQQ5KGJiQJSGlFKUaBVN6ANoFkdAkvObZOBUaXV9lChoBmgJaA9DCM8wtaUO82NAlIaUUpRoFU3oA2gWR0CS98H5rP+odX2UKGgGaAloD0MIAUwZOKDwX0CUhpRSlGgVTegDaBZHQJL6L2TPjXF1fZQoaAZoCWgPQwgD6zh+KCZnQJSGlFKUaBVN6ANoFkdAkwIpQxesxXV9lChoBmgJaA9DCLcqiewDeWNAlIaUUpRoFU3oA2gWR0CTAlGKyfL+dX2UKGgGaAloD0MIz/Onjeo6Y0CUhpRSlGgVTegDaBZHQJMHOdy1eBx1fZQoaAZoCWgPQwhmEvWCT0BmQJSGlFKUaBVN6ANoFkdAkwwr2L5yl3V9lChoBmgJaA9DCEXZW8p59GJAlIaUUpRoFU3oA2gWR0CTDfiNbTttdX2UKGgGaAloD0MIufscH60ZZECUhpRSlGgVTegDaBZHQJMP+hHskY51fZQoaAZoCWgPQwiqZtZSQMNlQJSGlFKUaBVN6ANoFkdAkxGV/6O5rnV9lChoBmgJaA9DCMrFGFhHOmFAlIaUUpRoFU3oA2gWR0CTHsovi97GdX2UKGgGaAloD0MIb0kO2FUsZUCUhpRSlGgVTegDaBZHQJMfllg+hXd1fZQoaAZoCWgPQwgG8YEdfxhmQJSGlFKUaBVN6ANoFkdAkyLUtEofCHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}