File size: 10,720 Bytes
0e4235d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Iterative evaluation script for fine-tuned models.
This script helps evaluate model performance on Pashto text
and provides guidance for iterative improvements.
"""
import argparse
import json
import os
import random
import time
from collections import defaultdict
import torch
import numpy as np
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
def parse_args():
parser = argparse.ArgumentParser(description="Evaluate and iteratively improve a fine-tuned model")
parser.add_argument(
"--model_name",
type=str,
required=True,
help="Hugging Face model name or local path",
)
parser.add_argument(
"--dataset_file",
type=str,
default="zamai_pashto_dataset.json",
help="JSON file with the dataset",
)
parser.add_argument(
"--num_samples",
type=int,
default=10,
help="Number of samples to evaluate",
)
parser.add_argument(
"--max_new_tokens",
type=int,
default=200,
help="Maximum new tokens to generate",
)
parser.add_argument(
"--temperature",
type=float,
default=0.7,
help="Sampling temperature",
)
parser.add_argument(
"--output_file",
type=str,
default="model_evaluation_results.json",
help="File to save evaluation results",
)
parser.add_argument(
"--merge_lora",
action="store_true",
help="Merge LoRA weights with the base model",
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="Random seed for reproducibility",
)
return parser.parse_args()
def categorize_samples(data):
"""Categorize dataset samples by type and length for better analysis"""
categories = defaultdict(list)
length_bins = {
"short": (0, 50),
"medium": (50, 200),
"long": (200, float('inf'))
}
for idx, item in enumerate(data):
# Skip samples without input or output
if not item.get('input') or not item.get('output'):
continue
# Determine length category
input_len = len(item['input'])
for length_cat, (min_len, max_len) in length_bins.items():
if min_len <= input_len < max_len:
categories[length_cat].append(idx)
break
return categories
def evaluate_model(model, tokenizer, data, sample_indices, max_new_tokens, temperature):
"""Evaluate model on selected samples"""
results = []
for idx in tqdm(sample_indices, desc="Evaluating samples"):
try:
item = data[idx]
input_text = item['input']
reference_output = item['output']
# Record start time
start_time = time.time()
# Generate text
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature
)
model_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Remove the input prompt from the output if it's there
if model_output.startswith(input_text):
model_output = model_output[len(input_text):].strip()
# Calculate time taken
time_taken = time.time() - start_time
results.append({
"index": idx,
"input": input_text,
"reference": reference_output,
"model_output": model_output,
"time_taken": time_taken,
"output_length": len(model_output)
})
except Exception as e:
print(f"Error processing sample {idx}: {e}")
return results
def analyze_results(results):
"""Analyze evaluation results and provide recommendations"""
if not results:
return "No results to analyze"
analysis = {}
# Calculate statistics
output_lengths = [r["output_length"] for r in results]
time_taken = [r["time_taken"] for r in results]
analysis["statistics"] = {
"avg_output_length": sum(output_lengths) / len(output_lengths),
"min_output_length": min(output_lengths),
"max_output_length": max(output_lengths),
"avg_time_per_token": sum(time_taken) / sum(output_lengths) if sum(output_lengths) > 0 else 0,
"total_samples": len(results)
}
# Generate recommendations
recommendations = []
# Check if outputs are too short
if analysis["statistics"]["avg_output_length"] < 30:
recommendations.append(
"The model's outputs are very short. Try fine-tuning with more diverse examples "
"or adjusting the temperature parameter for generation."
)
# Check completion rate (how many reached max tokens)
max_token_samples = sum(1 for r in results if r["output_length"] >= 0.9 * args.max_new_tokens)
if max_token_samples > 0.5 * len(results):
recommendations.append(
f"{max_token_samples} samples reached near max token length, which might indicate truncated outputs. "
f"Consider increasing max_new_tokens for evaluation."
)
# Analyze language balance in outputs
pashto_chars = sum(1 for r in results for c in r["model_output"] if '\u0600' <= c <= '\u06FF')
latin_chars = sum(1 for r in results for c in r["model_output"] if 'a' <= c.lower() <= 'z')
if latin_chars > pashto_chars * 0.5:
recommendations.append(
"Model outputs contain substantial Latin script. For a Pashto model, consider "
"more Pashto examples in your training data or longer fine-tuning."
)
# Add recommendations to analysis
analysis["recommendations"] = recommendations
# Identify areas for adding more examples
failing_areas = []
# This is a simplified analysis - in a real scenario, you might use embeddings or clustering
if any(len(r["model_output"]) < 20 for r in results):
failing_areas.append("short responses")
analysis["areas_for_data_augmentation"] = failing_areas
return analysis
def main():
args = parse_args()
random.seed(args.seed)
# Load dataset
print(f"Loading dataset from {args.dataset_file}")
with open(args.dataset_file, 'r', encoding='utf-8') as f:
data = json.load(f)
print(f"Dataset loaded with {len(data)} examples")
# Categorize samples
print("Categorizing samples...")
categories = categorize_samples(data)
for category, indices in categories.items():
print(f" {category}: {len(indices)} examples")
# Load model and tokenizer
print(f"Loading model {args.model_name}")
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
if args.merge_lora:
print("Loading and merging LoRA model...")
base_model_name = None # You'd need to specify the base model or extract it from config
if not base_model_name:
print("For merging LoRA models, please specify the base model name in the script.")
return
base_model = AutoModelForCausalLM.from_pretrained(
base_model_name,
torch_dtype=torch.float16,
device_map="auto"
)
model = PeftModel.from_pretrained(base_model, args.model_name)
model = model.merge_and_unload()
else:
model = AutoModelForCausalLM.from_pretrained(
args.model_name,
torch_dtype=torch.float16,
device_map="auto"
)
# Select samples from each category
all_sample_indices = []
samples_per_category = max(1, args.num_samples // len(categories))
for category, indices in categories.items():
if indices:
# Take at least one sample from each category, up to samples_per_category
category_samples = random.sample(indices, min(samples_per_category, len(indices)))
all_sample_indices.extend(category_samples)
# If we need more samples to reach args.num_samples, take random ones
if len(all_sample_indices) < args.num_samples:
remaining_indices = list(set(range(len(data))) - set(all_sample_indices))
if remaining_indices:
additional_samples = random.sample(
remaining_indices,
min(args.num_samples - len(all_sample_indices), len(remaining_indices))
)
all_sample_indices.extend(additional_samples)
print(f"Selected {len(all_sample_indices)} samples for evaluation")
# Evaluate model
results = evaluate_model(
model, tokenizer, data, all_sample_indices,
args.max_new_tokens, args.temperature
)
# Analyze results
print("\nAnalyzing results...")
analysis = analyze_results(results)
# Save results
output = {
"model_name": args.model_name,
"evaluation_samples": len(results),
"results": results,
"analysis": analysis
}
with open(args.output_file, 'w', encoding='utf-8') as f:
json.dump(output, f, ensure_ascii=False, indent=2)
print(f"Results saved to {args.output_file}")
# Display summary
print("\n===== Evaluation Summary =====")
print(f"Model: {args.model_name}")
print(f"Samples evaluated: {len(results)}")
print("\nStatistics:")
for key, value in analysis["statistics"].items():
print(f" {key}: {value:.2f}" if isinstance(value, float) else f" {key}: {value}")
if analysis["recommendations"]:
print("\nRecommendations for improvement:")
for i, rec in enumerate(analysis["recommendations"], 1):
print(f"{i}. {rec}")
print("\nIterative Process Guide:")
print("1. Review the generated outputs in the results file")
print("2. Based on recommendations, consider:")
print(" - Adjusting training parameters (learning rate, epochs)")
print(" - Adding more examples to underrepresented categories")
print(" - Cleaning existing training data")
print("3. Update your dataset and start a new training run")
print("4. Evaluate again and compare results")
if __name__ == "__main__":
main()
|