DewiBrynJones commited on
Commit
cb11aa5
·
verified ·
1 Parent(s): 6466ac2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -49
README.md CHANGED
@@ -9,61 +9,28 @@ metrics:
9
  model-index:
10
  - name: whisper-large-v3-ft-cv-cy-en
11
  results: []
 
 
 
 
 
 
12
  ---
13
 
14
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
- should probably proofread and complete it, then remove this comment. -->
16
-
17
  # whisper-large-v3-ft-cv-cy-en
18
 
19
- This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the DewiBrynJones/commonvoice_18_0_cy_en train main dataset.
20
- It achieves the following results on the evaluation set:
21
- - Loss: 0.2744
22
- - Wer: 0.1474
23
-
24
- ## Model description
25
-
26
- More information needed
27
-
28
- ## Intended uses & limitations
29
-
30
- More information needed
31
-
32
- ## Training and evaluation data
33
-
34
- More information needed
35
-
36
- ## Training procedure
37
-
38
- ### Training hyperparameters
39
-
40
- The following hyperparameters were used during training:
41
- - learning_rate: 1e-05
42
- - train_batch_size: 16
43
- - eval_batch_size: 16
44
- - seed: 42
45
- - gradient_accumulation_steps: 2
46
- - total_train_batch_size: 32
47
- - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
48
- - lr_scheduler_type: linear
49
- - lr_scheduler_warmup_steps: 500
50
- - training_steps: 5000
51
- - mixed_precision_training: Native AMP
52
 
53
- ### Training results
54
 
55
- | Training Loss | Epoch | Step | Validation Loss | Wer |
56
- |:-------------:|:------:|:----:|:---------------:|:------:|
57
- | 0.4825 | 0.7075 | 1000 | 0.2708 | 0.1810 |
58
- | 0.2262 | 1.4149 | 2000 | 0.2486 | 0.1594 |
59
- | 0.0867 | 2.1224 | 3000 | 0.2506 | 0.1511 |
60
- | 0.0973 | 2.8299 | 4000 | 0.2444 | 0.1490 |
61
- | 0.0303 | 3.5373 | 5000 | 0.2744 | 0.1474 |
62
 
 
 
 
63
 
64
- ### Framework versions
65
 
66
- - Transformers 4.46.1
67
- - Pytorch 2.5.1+cu124
68
- - Datasets 3.1.0
69
- - Tokenizers 0.20.1
 
9
  model-index:
10
  - name: whisper-large-v3-ft-cv-cy-en
11
  results: []
12
+ datasets:
13
+ - techiaith/commonvoice_18_0_cy_en
14
+ language:
15
+ - cy
16
+ - en
17
+ pipeline_tag: automatic-speech-recognition
18
  ---
19
 
 
 
 
20
  # whisper-large-v3-ft-cv-cy-en
21
 
22
+ This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the
23
+ [techiaith/commonvoice_18_0_cy_en](https://huggingface.co/datasets/techiaith/commonvoice_18_0_cy_en) dataset. Both the
24
+ English and Welsh data have been used to fine-tune the whisper model for transcribing both languages as well as improved
25
+ language detection.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
+ It achieves a success rate of *98.86% for language detection* on recordings from a [Common Voice bilingual test set](https://huggingface.co/datasets/techiaith/commonvoice_18_0_cy_en/viewer/default/test)
28
 
29
+ While, it achieves the following WER results for transcribing using the same test set:
 
 
 
 
 
 
30
 
31
+ - Welsh: 26.20
32
+ - English: 15.37
33
+ - Average: 20.70
34
 
35
+ N.B. the desired transcript language is not given to the fine-tuned model during testing.
36