# Import libraries import nltk import numpy as np import pickle nltk.download('punkt') # Define predict_word function def predict_word(model, last_word): if last_word in model: return np.random.choice(model[last_word]) else: return None # Load the model with open("model.pkl", "rb") as f: model = pickle.load(f) # Run the prediction for 10 words input_words = input('Input words: ') for i in range(10): input_words_list = nltk.word_tokenize(input_words) last_word = input_words_list[-1] predicted_word = predict_word(model, last_word) input_words = f"{input_words}" + " " + f'{predicted_word}' print(input_words)