File size: 7,789 Bytes
1467825 6a3cfb4 3fd8ea4 42072ff 6a3cfb4 1467825 6a3cfb4 42072ff 6a3cfb4 1467825 6a3cfb4 1467825 6a3cfb4 1467825 6a3cfb4 1467825 6a3cfb4 1467825 6a3cfb4 1467825 6a3cfb4 1467825 6a3cfb4 1467825 6a3cfb4 1467825 6a3cfb4 1467825 6a3cfb4 ab612a5 6a3cfb4 ab612a5 6a3cfb4 408cc54 c321094 6a3cfb4 81e5a3f 6a3cfb4 2318cc7 994ab56 2318cc7 1467825 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
---
library_name: transformers
tags:
- translation
---
<p align="center">
<img src="https://dscache.tencent-cloud.cn/upload/uploader/hunyuan-64b418fd052c033b228e04bc77bbc4b54fd7f5bc.png" width="400"/> <br>
</p><p></p>
<p align="center">
🤗 <a href="https://huggingface.co/collections/tencent/hunyuan-mt-68b42f76d473f82798882597"><b>Hugging Face</b></a> |
🤖 <a href="https://modelscope.cn/collections/Hunyuan-MT-2ca6b8e1b4934f"><b>ModelScope</b></a> |
🪡 <a href="https://github.com/Tencent/AngelSlim/tree/main"><b>AngelSlim</b></a>
</p>
<p align="center">
🖥️ <a href="https://hunyuan.tencent.com"><b>Official Website</b></a> |
🕹️ <a href="https://hunyuan.tencent.com/modelSquare/home/list"><b>Demo</b></a>
</p>
<p align="center">
<a href="https://github.com/Tencent-Hunyuan/Hunyuan-MT"><b>GITHUB</b></a>
</p>
## Model Introduction
Hunyuan-MT-Chimera-7B-fp8 was produced by [AngelSlim](https://github.com/Tencent/AngelSlim/tree/release/0.1). The Hunyuan Translation Model comprises a translation model, Hunyuan-MT-7B, and an ensemble model, Hunyuan-MT-Chimera. The translation model is used to translate source text into the target language, while the ensemble model integrates multiple translation outputs to produce a higher-quality result. It primarily supports mutual translation among 33 languages, including five ethnic minority languages in China.
### Key Features and Advantages
- In the WMT25 competition, the model achieved first place in 30 out of the 31 language categories it participated in.
- Hunyuan-MT-7B achieves industry-leading performance among models of comparable scale
- Hunyuan-MT-Chimera-7B is the industry’s first open-source translation ensemble model, elevating translation quality to a new level
- A comprehensive training framework for translation models has been proposed, spanning from pretrain → cross-lingual pretraining (CPT) → supervised fine-tuning (SFT) → translation enhancement → ensemble refinement, achieving state-of-the-art (SOTA) results for models of similar size
## Related News
* 2025.9.1 We have open-sourced **Hunyuan-MT-7B** , **Hunyuan-MT-Chimera-7B** on Hugging Face.
<br>
## 模型链接
| Model Name | Description | Download |
| ----------- | ----------- |-----------
| Hunyuan-MT-7B | Hunyuan 7B translation model |🤗 [Model](https://huggingface.co/tencent/Hunyuan-MT-7B)|
| Hunyuan-MT-7B-fp8 | Hunyuan 7B translation model,fp8 quant | 🤗 [Model](https://huggingface.co/tencent/Hunyuan-MT-7B-fp8)|
| Hunyuan-MT-Chimera | Hunyuan 7B translation ensemble model | 🤗 [Model](https://huggingface.co/tencent/Hunyuan-MT-Chimera-7B)|
| Hunyuan-MT-Chimera-fp8 | Hunyuan 7B translation ensemble model,fp8 quant | 🤗 [Model](https://huggingface.co/tencent/Hunyuan-MT-Chimera-7B-fp8)|
## Prompts
### Prompt Template for ZH<=>XX Translation.
```
把下面的文本翻译成<target_language>,不要额外解释。
<source_text>
```
### Prompt Template for XX<=>XX Translation, excluding ZH<=>XX.
```
Translate the following segment into <target_language>, without additional explanation.
<source_text>
```
### Prompt Template for Hunyuan-MT-Chmeria-7B
```
Analyze the following multiple <target_language> translations of the <source_language> segment surrounded in triple backticks and generate a single refined <target_language> translation. Only output the refined translation, do not explain.
The <source_language> segment:
```<source_text>```
The multiple <target_language> translations:
1. ```<translated_text1>```
2. ```<translated_text2>```
3. ```<translated_text3>```
4. ```<translated_text4>```
5. ```<translated_text5>```
6. ```<translated_text6>```
```
### Use with transformers
First, please install transformers, recommends v4.56.0
```SHELL
pip install transformers==4.56.0
```
The following code snippet shows how to use the transformers library to load and apply the model.
*!!! If you want to load fp8 model with transformers, you need to change the name"ignored_layers" in config.json to "ignore" and upgrade the compressed-tensors to compressed-tensors-0.11.0.*
we use tencent/Hunyuan-MT-7B for example
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
model_name_or_path = "tencent/Hunyuan-MT-7B"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto") # You may want to use bfloat16 and/or move to GPU here
messages = [
{"role": "user", "content": "Translate the following segment into Chinese, without additional explanation.\n\nIt’s on the house."},
]
tokenized_chat = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=False,
return_tensors="pt"
)
outputs = model.generate(tokenized_chat.to(model.device), max_new_tokens=2048)
output_text = tokenizer.decode(outputs[0])
```
We recommend using the following set of parameters for inference. Note that our model does not have the default system_prompt.
```json
{
"top_k": 20,
"top_p": 0.6,
"repetition_penalty": 1.05,
"temperature": 0.7
}
```
Supported languages:
| Languages | Abbr. | Chinese Names |
|-------------------|---------|-----------------|
| Chinese | zh | 中文 |
| English | en | 英语 |
| French | fr | 法语 |
| Portuguese | pt | 葡萄牙语 |
| Spanish | es | 西班牙语 |
| Japanese | ja | 日语 |
| Turkish | tr | 土耳其语 |
| Russian | ru | 俄语 |
| Arabic | ar | 阿拉伯语 |
| Korean | ko | 韩语 |
| Thai | th | 泰语 |
| Italian | it | 意大利语 |
| German | de | 德语 |
| Vietnamese | vi | 越南语 |
| Malay | ms | 马来语 |
| Indonesian | id | 印尼语 |
| Filipino | tl | 菲律宾语 |
| Hindi | hi | 印地语 |
| Traditional Chinese | zh-Hant| 繁体中文 |
| Polish | pl | 波兰语 |
| Czech | cs | 捷克语 |
| Dutch | nl | 荷兰语 |
| Khmer | km | 高棉语 |
| Burmese | my | 缅甸语 |
| Persian | fa | 波斯语 |
| Gujarati | gu | 古吉拉特语 |
| Urdu | ur | 乌尔都语 |
| Telugu | te | 泰卢固语 |
| Marathi | mr | 马拉地语 |
| Hebrew | he | 希伯来语 |
| Bengali | bn | 孟加拉语 |
| Tamil | ta | 泰米尔语 |
| Ukrainian | uk | 乌克兰语 |
| Tibetan | bo | 藏语 |
| Kazakh | kk | 哈萨克语 |
| Mongolian | mn | 蒙古语 |
| Uyghur | ug | 维吾尔语 |
| Cantonese | yue | 粤语 |
Citing Hunyuan-MT:
```bibtex
@misc{hunyuanmt2025,
title={Hunyuan-MT Technical Report},
author={Mao Zheng, Zheng Li, Bingxin Qu, Mingyang Song, Yang Du, Mingrui Sun, Di Wang, Tao Chen, Jiaqi Zhu, Xingwu Sun, Yufei Wang, Can Xu, Chen Li, Kai Wang, Decheng Wu},
howpublished={\url{https://github.com/Tencent-Hunyuan/Hunyuan-MT}},
year={2025}
}
``` |