File size: 7,789 Bytes
1467825
 
 
 
 
6a3cfb4
 
 
 
 
 
 
 
 
3fd8ea4
42072ff
6a3cfb4
 
 
1467825
6a3cfb4
 
 
 
 
 
 
 
 
 
42072ff
6a3cfb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1467825
6a3cfb4
1467825
6a3cfb4
1467825
 
 
6a3cfb4
 
 
1467825
6a3cfb4
1467825
6a3cfb4
1467825
 
 
6a3cfb4
 
 
1467825
 
 
6a3cfb4
1467825
6a3cfb4
 
1467825
6a3cfb4
 
 
 
 
 
 
1467825
6a3cfb4
 
 
 
ab612a5
6a3cfb4
ab612a5
6a3cfb4
 
 
 
408cc54
c321094
6a3cfb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81e5a3f
6a3cfb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2318cc7
 
994ab56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2318cc7
 
 
 
 
 
 
 
 
1467825
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
---
library_name: transformers
tags:
- translation
---


<p align="center">
 <img src="https://dscache.tencent-cloud.cn/upload/uploader/hunyuan-64b418fd052c033b228e04bc77bbc4b54fd7f5bc.png" width="400"/> <br>
</p><p></p>


<p align="center">
    🤗&nbsp;<a href="https://huggingface.co/collections/tencent/hunyuan-mt-68b42f76d473f82798882597"><b>Hugging Face</b></a>&nbsp;&nbsp;|&nbsp;&nbsp;
    🤖&nbsp;<a href="https://modelscope.cn/collections/Hunyuan-MT-2ca6b8e1b4934f"><b>ModelScope</b></a>&nbsp;&nbsp;|&nbsp;&nbsp;
    🪡&nbsp;<a href="https://github.com/Tencent/AngelSlim/tree/main"><b>AngelSlim</b></a>
</p>

<p align="center">
    🖥️&nbsp;<a href="https://hunyuan.tencent.com"><b>Official Website</b></a>&nbsp;&nbsp;|&nbsp;&nbsp;
    🕹️&nbsp;<a href="https://hunyuan.tencent.com/modelSquare/home/list"><b>Demo</b></a>&nbsp;&nbsp;&nbsp;&nbsp;
</p>

<p align="center">
    <a href="https://github.com/Tencent-Hunyuan/Hunyuan-MT"><b>GITHUB</b></a>
</p>


## Model Introduction

Hunyuan-MT-Chimera-7B-fp8 was produced by [AngelSlim](https://github.com/Tencent/AngelSlim/tree/release/0.1). The Hunyuan Translation Model comprises a translation model, Hunyuan-MT-7B, and an ensemble model, Hunyuan-MT-Chimera. The translation model is used to translate source text into the target language, while the ensemble model integrates multiple translation outputs to produce a higher-quality result. It primarily supports mutual translation among 33 languages, including five ethnic minority languages in China.

### Key Features and Advantages

- In the WMT25 competition, the model achieved first place in 30 out of the 31 language categories it participated in.
- Hunyuan-MT-7B achieves industry-leading performance among models of comparable scale
- Hunyuan-MT-Chimera-7B is the industry’s first open-source translation ensemble model, elevating translation quality to a new level
- A comprehensive training framework for translation models has been proposed, spanning from pretrain → cross-lingual pretraining (CPT) → supervised fine-tuning (SFT) → translation enhancement → ensemble refinement, achieving state-of-the-art (SOTA) results for models of similar size

## Related News
* 2025.9.1 We have open-sourced  **Hunyuan-MT-7B** , **Hunyuan-MT-Chimera-7B** on Hugging Face.
<br>


&nbsp;

## 模型链接
| Model Name  | Description | Download |
| ----------- | ----------- |-----------
| Hunyuan-MT-7B  | Hunyuan 7B translation model |🤗 [Model](https://huggingface.co/tencent/Hunyuan-MT-7B)|
| Hunyuan-MT-7B-fp8 | Hunyuan 7B translation model,fp8 quant    | 🤗 [Model](https://huggingface.co/tencent/Hunyuan-MT-7B-fp8)|
| Hunyuan-MT-Chimera | Hunyuan 7B translation ensemble model    | 🤗 [Model](https://huggingface.co/tencent/Hunyuan-MT-Chimera-7B)|
| Hunyuan-MT-Chimera-fp8 | Hunyuan 7B translation ensemble model,fp8 quant     | 🤗 [Model](https://huggingface.co/tencent/Hunyuan-MT-Chimera-7B-fp8)|

## Prompts

### Prompt Template for ZH<=>XX Translation.

```

把下面的文本翻译成<target_language>,不要额外解释。

<source_text>

```

### Prompt Template for XX<=>XX Translation, excluding ZH<=>XX.

```

Translate the following segment into <target_language>, without additional explanation.

<source_text>

```

### Prompt Template for Hunyuan-MT-Chmeria-7B

```

Analyze the following multiple <target_language> translations of the <source_language> segment surrounded in triple backticks and generate a single refined <target_language> translation. Only output the refined translation, do not explain.

The <source_language> segment:
```<source_text>```

The multiple <target_language> translations:
1. ```<translated_text1>```
2. ```<translated_text2>```
3. ```<translated_text3>```
4. ```<translated_text4>```
5. ```<translated_text5>```
6. ```<translated_text6>```

```

&nbsp;

### Use with transformers
First, please install transformers, recommends v4.56.0
```SHELL
pip install transformers==4.56.0
```

The following code snippet shows how to use the transformers library to load and apply the model.

*!!! If you want to load fp8 model with transformers, you need to change the name"ignored_layers" in config.json to "ignore" and upgrade the compressed-tensors to compressed-tensors-0.11.0.*

we use tencent/Hunyuan-MT-7B for example

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import os

model_name_or_path = "tencent/Hunyuan-MT-7B"

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto")  # You may want to use bfloat16 and/or move to GPU here
messages = [
    {"role": "user", "content": "Translate the following segment into Chinese, without additional explanation.\n\nIt’s on the house."},
]
tokenized_chat = tokenizer.apply_chat_template(
    messages,
    tokenize=True,
    add_generation_prompt=False,
    return_tensors="pt"
)

outputs = model.generate(tokenized_chat.to(model.device), max_new_tokens=2048)
output_text = tokenizer.decode(outputs[0])
```

We recommend using the following set of parameters for inference. Note that our model does not have the default system_prompt.

```json
{
  "top_k": 20,
  "top_p": 0.6,
  "repetition_penalty": 1.05,
  "temperature": 0.7
}
```

Supported languages:
| Languages         | Abbr.   | Chinese Names   |
|-------------------|---------|-----------------|
| Chinese           | zh      | 中文            |
| English           | en      | 英语            |
| French            | fr      | 法语            |
| Portuguese        | pt      | 葡萄牙语        |
| Spanish           | es      | 西班牙语        |
| Japanese          | ja      | 日语            |
| Turkish           | tr      | 土耳其语        |
| Russian           | ru      | 俄语            |
| Arabic            | ar      | 阿拉伯语        |
| Korean            | ko      | 韩语            |
| Thai              | th      | 泰语            |
| Italian           | it      | 意大利语        |
| German            | de      | 德语            |
| Vietnamese        | vi      | 越南语          |
| Malay             | ms      | 马来语          |
| Indonesian        | id      | 印尼语          |
| Filipino          | tl      | 菲律宾语        |
| Hindi             | hi      | 印地语          |
| Traditional Chinese | zh-Hant| 繁体中文        |
| Polish            | pl      | 波兰语          |
| Czech             | cs      | 捷克语          |
| Dutch             | nl      | 荷兰语          |
| Khmer             | km      | 高棉语          |
| Burmese           | my      | 缅甸语          |
| Persian           | fa      | 波斯语          |
| Gujarati          | gu      | 古吉拉特语      |
| Urdu              | ur      | 乌尔都语        |
| Telugu            | te      | 泰卢固语        |
| Marathi           | mr      | 马拉地语        |
| Hebrew            | he      | 希伯来语        |
| Bengali           | bn      | 孟加拉语        |
| Tamil             | ta      | 泰米尔语        |
| Ukrainian         | uk      | 乌克兰语        |
| Tibetan           | bo      | 藏语            |
| Kazakh            | kk      | 哈萨克语        |
| Mongolian         | mn      | 蒙古语          |
| Uyghur            | ug      | 维吾尔语        |
| Cantonese         | yue     | 粤语            |

Citing Hunyuan-MT:

```bibtex
@misc{hunyuanmt2025,
  title={Hunyuan-MT Technical Report},
  author={Mao Zheng, Zheng Li, Bingxin Qu, Mingyang Song, Yang Du, Mingrui Sun, Di Wang, Tao Chen, Jiaqi Zhu, Xingwu Sun, Yufei Wang, Can Xu, Chen Li, Kai Wang, Decheng Wu},
  howpublished={\url{https://github.com/Tencent-Hunyuan/Hunyuan-MT}},
  year={2025}
}
```