Update README.md
Browse files
README.md
CHANGED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
<p align="center">
|
4 |
+
<img src="https://dscache.tencent-cloud.cn/upload/uploader/hunyuan-64b418fd052c033b228e04bc77bbc4b54fd7f5bc.png" width="400"/> <br>
|
5 |
+
</p><p></p>
|
6 |
+
|
7 |
+
|
8 |
+
<p align="center">
|
9 |
+
🤗 <a href="https://huggingface.co/collections/tencent/hunyuan-mt-68b42f76d473f82798882597"><b>Hugging Face</b></a> |
|
10 |
+
<img src="https://avatars.githubusercontent.com/u/109945100?s=200&v=4" width="16"/> <a href="https://modelscope.cn/collections/Hunyuan-MT-2ca6b8e1b4934f"><b>ModelScope</b></a> |
|
11 |
+
</p>
|
12 |
+
|
13 |
+
<p align="center">
|
14 |
+
🖥️ <a href="https://hunyuan.tencent.com" style="color: red;"><b>Official Website</b></a> |
|
15 |
+
🕹️ <a href="https://hunyuan.tencent.com/modelSquare/home/list"><b>Demo</b></a>
|
16 |
+
</p>
|
17 |
+
|
18 |
+
<p align="center">
|
19 |
+
<a href="https://github.com/Tencent-Hunyuan/Hunyuan-MT"><b>GITHUB</b></a>
|
20 |
+
</p>
|
21 |
+
|
22 |
+
|
23 |
+
## Model Introduction
|
24 |
+
|
25 |
+
The Hunyuan Translation Model comprises a translation model, Hunyuan-MT-7B, and an ensemble model, Hunyuan-MT-Chimera. The translation model is used to translate source text into the target language, while the ensemble model integrates multiple translation outputs to produce a higher-quality result. It primarily supports mutual translation among 33 languages, including five ethnic minority languages in China.
|
26 |
+
|
27 |
+
### Key Features and Advantages
|
28 |
+
|
29 |
+
- In the WMT25 competition, the model achieved first place in 30 out of the 31 language categories it participated in.
|
30 |
+
- Hunyuan-MT-7B achieves industry-leading performance among models of comparable scale
|
31 |
+
- Hunyuan-MT-Chimera-7B is the industry’s first open-source translation ensemble model, elevating translation quality to a new level
|
32 |
+
- A comprehensive training framework for translation models has been proposed, spanning from pretrain → cross-lingual pretraining (CPT) → supervised fine-tuning (SFT) → translation enhancement → ensemble refinement, achieving state-of-the-art (SOTA) results for models of similar size
|
33 |
+
|
34 |
+
## Related News
|
35 |
+
* 2025.9.1 We have open-sourced **Hunyuan-MT-7B** , **Hunyuan-MT-Chimera-7B** on Hugging Face.
|
36 |
+
<br>
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
## 模型链接
|
42 |
+
| Model Name | Description | Download |
|
43 |
+
| ----------- | ----------- |-----------
|
44 |
+
| Hunyuan-MT-7B | Hunyuan 7B translation model |🤗 [Model](https://huggingface.co/tencent/Hunyuan-MT-7B)|
|
45 |
+
| Hunyuan-MT-7B-fp8 | Hunyuan 7B translation model,fp8 quant | 🤗 [Model](https://huggingface.co/tencent/Hunyuan-MT-7B-fp8)|
|
46 |
+
| Hunyuan-MT-Chimera | Hunyuan 7B translation ensemble model | 🤗 [Model](https://huggingface.co/tencent/Hunyuan-MT-Chimera-7B)|
|
47 |
+
| Hunyuan-MT-Chimera-fp8 | Hunyuan 7B translation ensemble model,fp8 quant | 🤗 [Model](https://huggingface.co/tencent/Hunyuan-MT-Chimera-7B-fp8)|
|
48 |
+
|
49 |
+
## Prompts
|
50 |
+
|
51 |
+
### Prompt Template for ZH<=>XX Translation.
|
52 |
+
|
53 |
+
把下面的文本翻译成`<target_language>`,不要额外解释。
|
54 |
+
|
55 |
+
`<source_text>`
|
56 |
+
|
57 |
+
---
|
58 |
+
|
59 |
+
### Prompt Template for XX<=>XX Translation, excluding ZH<=>XX.
|
60 |
+
|
61 |
+
Translate the following segment into `<target_language>`, without additional explanation.
|
62 |
+
|
63 |
+
`<source_text>`
|
64 |
+
|
65 |
+
|
66 |
+
### Prompt Template for Hunyuan-MT-Chmeria-7B
|
67 |
+
|
68 |
+
Analyze the following multiple `<target_language>` translations of the `<source_language>` segment surrounded in triple backticks and generate a single refined `<target_language>` translation. Only output the refined translation, do not explain.
|
69 |
+
|
70 |
+
The `<source_language>` segment:
|
71 |
+
```<source_text>```
|
72 |
+
|
73 |
+
The multiple `<target_language>` translations:
|
74 |
+
1. ```<translated_text1>```
|
75 |
+
2. ```<translated_text2>```
|
76 |
+
3. ```<translated_text3>```
|
77 |
+
4. ```<translated_text4>```
|
78 |
+
5. ```<translated_text5>```
|
79 |
+
6. ```<translated_text6>```
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
### Use with transformers
|
85 |
+
First, please install transformers, recommends v4.55.4
|
86 |
+
```SHELL
|
87 |
+
pip install transformers==4.55.4
|
88 |
+
```
|
89 |
+
|
90 |
+
The following code snippet shows how to use the transformers library to load and apply the model.
|
91 |
+
|
92 |
+
we use tencent/Hunyuan-MT-7B for example
|
93 |
+
|
94 |
+
```python
|
95 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
96 |
+
import os
|
97 |
+
|
98 |
+
model_name_or_path = "tencent/Hunyuan-MT-7B"
|
99 |
+
|
100 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
101 |
+
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto") # You may want to use bfloat16 and/or move to GPU here
|
102 |
+
messages = [
|
103 |
+
{"role": "user", "content": "Translate the following segment into Chinese, without additional explanation.\n\nIt’s on the house."},
|
104 |
+
]
|
105 |
+
tokenized_chat = tokenizer.apply_chat_template(
|
106 |
+
messages,
|
107 |
+
tokenize=True
|
108 |
+
add_generation_prompt=False,
|
109 |
+
return_tensors="pt"
|
110 |
+
)
|
111 |
+
|
112 |
+
outputs = model.generate(tokenized_chat.to(model.device), max_new_tokens=2048)
|
113 |
+
output_text = tokenizer.decode(outputs[0])
|
114 |
+
```
|
115 |
+
|
116 |
+
We recommend using the following set of parameters for inference. Note that our model does not have the default system_prompt.
|
117 |
+
|
118 |
+
```json
|
119 |
+
{
|
120 |
+
"top_k": 20,
|
121 |
+
"top_p": 0.6,
|
122 |
+
"repetition_penalty": 1.05,
|
123 |
+
"temperature": 0.7
|
124 |
+
}
|
125 |
+
```
|