File size: 7,161 Bytes
24806e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfb66e1
 
 
 
 
 
 
24806e8
 
 
 
 
 
 
7fd3d39
 
 
04e1ac6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fd3d39
 
 
 
 
04e1ac6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fd3d39
24806e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
---
license: apache-2.0
datasets:
- nicholasKluge/instruct-aira-dataset
language:
- en
metrics:
- accuracy
library_name: transformers
tags:
- alignment
- instruction tuned
- text generation
- conversation
- assistant
- TensorBlock
- GGUF
pipeline_tag: text-generation
widget:
- text: <|startofinstruction|>Can you explain what is Machine Learning?<|endofinstruction|>
  example_title: Machine Learning
- text: <|startofinstruction|>Do you know anything about virtue ethics?<|endofinstruction|>
  example_title: Ethics
- text: <|startofinstruction|>How can I make my girlfriend happy?<|endofinstruction|>
  example_title: Advise
inference:
  parameters:
    repetition_penalty: 1.2
    temperature: 0.2
    top_k: 30
    top_p: 0.3
    max_new_tokens: 200
    length_penalty: 0.3
    early_stopping: true
co2_eq_emissions:
  emissions: 770
  source: CodeCarbon
  training_type: fine-tuning
  geographical_location: United States of America
  hardware_used: NVIDIA A100-SXM4-40GB
base_model: nicholasKluge/Aira-2-774M
---

<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>

[![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co)
[![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi)
[![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2)
[![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock)
[![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock)


## nicholasKluge/Aira-2-774M - GGUF

This repo contains GGUF format model files for [nicholasKluge/Aira-2-774M](https://huggingface.co/nicholasKluge/Aira-2-774M).

The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).

## Our projects
<table border="1" cellspacing="0" cellpadding="10">
  <tr>
    <th colspan="2" style="font-size: 25px;">Forge</th>
  </tr>
  <tr>
    <th colspan="2">
      <img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/>
    </th>
  </tr>
  <tr>
    <th colspan="2">An OpenAI-compatible multi-provider routing layer.</th>
  </tr>
  <tr>
    <th colspan="2">
      <a href="https://github.com/TensorBlock/forge" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">πŸš€ Try it now! πŸš€</a>
    </th>
  </tr>

  <tr>
    <th style="font-size: 25px;">Awesome MCP Servers</th>
    <th style="font-size: 25px;">TensorBlock Studio</th>
  </tr>
  <tr>
    <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th>
    <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th>
  </tr>
  <tr>
    <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th>
    <th>A lightweight, open, and extensible multi-LLM interaction studio.</th>
  </tr>
  <tr>
    <th>
      <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">πŸ‘€ See what we built πŸ‘€</a>
    </th>
    <th>
      <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">πŸ‘€ See what we built πŸ‘€</a>
    </th>
  </tr>
</table>
## Prompt template

```

```

## Model file specification

| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Aira-2-774M-Q2_K.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q2_K.gguf) | Q2_K | 0.322 GB | smallest, significant quality loss - not recommended for most purposes |
| [Aira-2-774M-Q3_K_S.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q3_K_S.gguf) | Q3_K_S | 0.367 GB | very small, high quality loss |
| [Aira-2-774M-Q3_K_M.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q3_K_M.gguf) | Q3_K_M | 0.427 GB | very small, high quality loss |
| [Aira-2-774M-Q3_K_L.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q3_K_L.gguf) | Q3_K_L | 0.460 GB | small, substantial quality loss |
| [Aira-2-774M-Q4_0.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q4_0.gguf) | Q4_0 | 0.462 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Aira-2-774M-Q4_K_S.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q4_K_S.gguf) | Q4_K_S | 0.465 GB | small, greater quality loss |
| [Aira-2-774M-Q4_K_M.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q4_K_M.gguf) | Q4_K_M | 0.511 GB | medium, balanced quality - recommended |
| [Aira-2-774M-Q5_0.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q5_0.gguf) | Q5_0 | 0.552 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Aira-2-774M-Q5_K_S.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q5_K_S.gguf) | Q5_K_S | 0.552 GB | large, low quality loss - recommended |
| [Aira-2-774M-Q5_K_M.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q5_K_M.gguf) | Q5_K_M | 0.589 GB | large, very low quality loss - recommended |
| [Aira-2-774M-Q6_K.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q6_K.gguf) | Q6_K | 0.648 GB | very large, extremely low quality loss |
| [Aira-2-774M-Q8_0.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q8_0.gguf) | Q8_0 | 0.836 GB | very large, extremely low quality loss - not recommended |


## Downloading instruction

### Command line

Firstly, install Huggingface Client

```shell
pip install -U "huggingface_hub[cli]"
```

Then, downoad the individual model file the a local directory

```shell
huggingface-cli download tensorblock/Aira-2-774M-GGUF --include "Aira-2-774M-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```

If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:

```shell
huggingface-cli download tensorblock/Aira-2-774M-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```