File size: 7,161 Bytes
24806e8 bfb66e1 24806e8 7fd3d39 04e1ac6 7fd3d39 04e1ac6 7fd3d39 24806e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
---
license: apache-2.0
datasets:
- nicholasKluge/instruct-aira-dataset
language:
- en
metrics:
- accuracy
library_name: transformers
tags:
- alignment
- instruction tuned
- text generation
- conversation
- assistant
- TensorBlock
- GGUF
pipeline_tag: text-generation
widget:
- text: <|startofinstruction|>Can you explain what is Machine Learning?<|endofinstruction|>
example_title: Machine Learning
- text: <|startofinstruction|>Do you know anything about virtue ethics?<|endofinstruction|>
example_title: Ethics
- text: <|startofinstruction|>How can I make my girlfriend happy?<|endofinstruction|>
example_title: Advise
inference:
parameters:
repetition_penalty: 1.2
temperature: 0.2
top_k: 30
top_p: 0.3
max_new_tokens: 200
length_penalty: 0.3
early_stopping: true
co2_eq_emissions:
emissions: 770
source: CodeCarbon
training_type: fine-tuning
geographical_location: United States of America
hardware_used: NVIDIA A100-SXM4-40GB
base_model: nicholasKluge/Aira-2-774M
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
[](https://tensorblock.co)
[](https://twitter.com/tensorblock_aoi)
[](https://discord.gg/Ej5NmeHFf2)
[](https://github.com/TensorBlock)
[](https://t.me/TensorBlock)
## nicholasKluge/Aira-2-774M - GGUF
This repo contains GGUF format model files for [nicholasKluge/Aira-2-774M](https://huggingface.co/nicholasKluge/Aira-2-774M).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Our projects
<table border="1" cellspacing="0" cellpadding="10">
<tr>
<th colspan="2" style="font-size: 25px;">Forge</th>
</tr>
<tr>
<th colspan="2">
<img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/>
</th>
</tr>
<tr>
<th colspan="2">An OpenAI-compatible multi-provider routing layer.</th>
</tr>
<tr>
<th colspan="2">
<a href="https://github.com/TensorBlock/forge" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">π Try it now! π</a>
</th>
</tr>
<tr>
<th style="font-size: 25px;">Awesome MCP Servers</th>
<th style="font-size: 25px;">TensorBlock Studio</th>
</tr>
<tr>
<th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th>
<th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th>
</tr>
<tr>
<th>A comprehensive collection of Model Context Protocol (MCP) servers.</th>
<th>A lightweight, open, and extensible multi-LLM interaction studio.</th>
</tr>
<tr>
<th>
<a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">π See what we built π</a>
</th>
<th>
<a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">π See what we built π</a>
</th>
</tr>
</table>
## Prompt template
```
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Aira-2-774M-Q2_K.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q2_K.gguf) | Q2_K | 0.322 GB | smallest, significant quality loss - not recommended for most purposes |
| [Aira-2-774M-Q3_K_S.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q3_K_S.gguf) | Q3_K_S | 0.367 GB | very small, high quality loss |
| [Aira-2-774M-Q3_K_M.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q3_K_M.gguf) | Q3_K_M | 0.427 GB | very small, high quality loss |
| [Aira-2-774M-Q3_K_L.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q3_K_L.gguf) | Q3_K_L | 0.460 GB | small, substantial quality loss |
| [Aira-2-774M-Q4_0.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q4_0.gguf) | Q4_0 | 0.462 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Aira-2-774M-Q4_K_S.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q4_K_S.gguf) | Q4_K_S | 0.465 GB | small, greater quality loss |
| [Aira-2-774M-Q4_K_M.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q4_K_M.gguf) | Q4_K_M | 0.511 GB | medium, balanced quality - recommended |
| [Aira-2-774M-Q5_0.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q5_0.gguf) | Q5_0 | 0.552 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Aira-2-774M-Q5_K_S.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q5_K_S.gguf) | Q5_K_S | 0.552 GB | large, low quality loss - recommended |
| [Aira-2-774M-Q5_K_M.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q5_K_M.gguf) | Q5_K_M | 0.589 GB | large, very low quality loss - recommended |
| [Aira-2-774M-Q6_K.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q6_K.gguf) | Q6_K | 0.648 GB | very large, extremely low quality loss |
| [Aira-2-774M-Q8_0.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q8_0.gguf) | Q8_0 | 0.836 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/Aira-2-774M-GGUF --include "Aira-2-774M-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/Aira-2-774M-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|