---
license: apache-2.0
datasets:
- nicholasKluge/instruct-aira-dataset
language:
- en
metrics:
- accuracy
library_name: transformers
tags:
- alignment
- instruction tuned
- text generation
- conversation
- assistant
- TensorBlock
- GGUF
pipeline_tag: text-generation
widget:
- text: <|startofinstruction|>Can you explain what is Machine Learning?<|endofinstruction|>
example_title: Machine Learning
- text: <|startofinstruction|>Do you know anything about virtue ethics?<|endofinstruction|>
example_title: Ethics
- text: <|startofinstruction|>How can I make my girlfriend happy?<|endofinstruction|>
example_title: Advise
inference:
parameters:
repetition_penalty: 1.2
temperature: 0.2
top_k: 30
top_p: 0.3
max_new_tokens: 200
length_penalty: 0.3
early_stopping: true
co2_eq_emissions:
emissions: 770
source: CodeCarbon
training_type: fine-tuning
geographical_location: United States of America
hardware_used: NVIDIA A100-SXM4-40GB
base_model: nicholasKluge/Aira-2-774M
---
[](https://tensorblock.co)
[](https://twitter.com/tensorblock_aoi)
[](https://discord.gg/Ej5NmeHFf2)
[](https://github.com/TensorBlock)
[](https://t.me/TensorBlock)
## nicholasKluge/Aira-2-774M - GGUF
This repo contains GGUF format model files for [nicholasKluge/Aira-2-774M](https://huggingface.co/nicholasKluge/Aira-2-774M).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Our projects
## Prompt template
```
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Aira-2-774M-Q2_K.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q2_K.gguf) | Q2_K | 0.322 GB | smallest, significant quality loss - not recommended for most purposes |
| [Aira-2-774M-Q3_K_S.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q3_K_S.gguf) | Q3_K_S | 0.367 GB | very small, high quality loss |
| [Aira-2-774M-Q3_K_M.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q3_K_M.gguf) | Q3_K_M | 0.427 GB | very small, high quality loss |
| [Aira-2-774M-Q3_K_L.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q3_K_L.gguf) | Q3_K_L | 0.460 GB | small, substantial quality loss |
| [Aira-2-774M-Q4_0.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q4_0.gguf) | Q4_0 | 0.462 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Aira-2-774M-Q4_K_S.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q4_K_S.gguf) | Q4_K_S | 0.465 GB | small, greater quality loss |
| [Aira-2-774M-Q4_K_M.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q4_K_M.gguf) | Q4_K_M | 0.511 GB | medium, balanced quality - recommended |
| [Aira-2-774M-Q5_0.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q5_0.gguf) | Q5_0 | 0.552 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Aira-2-774M-Q5_K_S.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q5_K_S.gguf) | Q5_K_S | 0.552 GB | large, low quality loss - recommended |
| [Aira-2-774M-Q5_K_M.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q5_K_M.gguf) | Q5_K_M | 0.589 GB | large, very low quality loss - recommended |
| [Aira-2-774M-Q6_K.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q6_K.gguf) | Q6_K | 0.648 GB | very large, extremely low quality loss |
| [Aira-2-774M-Q8_0.gguf](https://huggingface.co/tensorblock/Aira-2-774M-GGUF/blob/main/Aira-2-774M-Q8_0.gguf) | Q8_0 | 0.836 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/Aira-2-774M-GGUF --include "Aira-2-774M-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/Aira-2-774M-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```