File size: 9,567 Bytes
2cbf4fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fad827
 
 
 
 
 
 
2cbf4fb
 
 
 
 
 
 
479dcc9
 
 
62a9056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
479dcc9
 
 
 
 
62a9056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
479dcc9
2cbf4fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
---
language:
- en
- fr
- es
- ru
- zh
- ja
- fa
- code
license: mit
library_name: transformers
tags:
- fluently-lm
- fluently
- prinum
- instruct
- trained
- math
- roleplay
- reasoning
- axolotl
- unsloth
- argilla
- qwen2
- TensorBlock
- GGUF
datasets:
- fluently-sets/ultraset
- fluently-sets/ultrathink
- fluently-sets/reasoning-1-1k
- fluently-sets/MATH-500-Overall
inference: true
pipeline_tag: text-generation
base_model: fluently-lm/FluentlyLM-Prinum
model-index:
- name: FluentlyLM-Prinum
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 80.9
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 59.48
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 54.0
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 18.23
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 17.26
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 53.42
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fluently-lm/FluentlyLM-Prinum
      name: Open LLM Leaderboard
---

<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>

[![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co)
[![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi)
[![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2)
[![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock)
[![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock)


## fluently-lm/FluentlyLM-Prinum - GGUF

This repo contains GGUF format model files for [fluently-lm/FluentlyLM-Prinum](https://huggingface.co/fluently-lm/FluentlyLM-Prinum).

The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4823](https://github.com/ggml-org/llama.cpp/commit/5bbe6a9fe9a8796a9389c85accec89dbc4d91e39).

## Our projects
<table border="1" cellspacing="0" cellpadding="10">
  <tr>
    <th colspan="2" style="font-size: 25px;">Forge</th>
  </tr>
  <tr>
    <th colspan="2">
      <img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/>
    </th>
  </tr>
  <tr>
    <th colspan="2">An OpenAI-compatible multi-provider routing layer.</th>
  </tr>
  <tr>
    <th colspan="2">
      <a href="https://github.com/TensorBlock/forge" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">πŸš€ Try it now! πŸš€</a>
    </th>
  </tr>

  <tr>
    <th style="font-size: 25px;">Awesome MCP Servers</th>
    <th style="font-size: 25px;">TensorBlock Studio</th>
  </tr>
  <tr>
    <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th>
    <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th>
  </tr>
  <tr>
    <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th>
    <th>A lightweight, open, and extensible multi-LLM interaction studio.</th>
  </tr>
  <tr>
    <th>
      <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">πŸ‘€ See what we built πŸ‘€</a>
    </th>
    <th>
      <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">πŸ‘€ See what we built πŸ‘€</a>
    </th>
  </tr>
</table>
## Prompt template

```
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```

## Model file specification

| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [FluentlyLM-Prinum-Q2_K.gguf](https://huggingface.co/tensorblock/FluentlyLM-Prinum-GGUF/blob/main/FluentlyLM-Prinum-Q2_K.gguf) | Q2_K | 12.313 GB | smallest, significant quality loss - not recommended for most purposes |
| [FluentlyLM-Prinum-Q3_K_S.gguf](https://huggingface.co/tensorblock/FluentlyLM-Prinum-GGUF/blob/main/FluentlyLM-Prinum-Q3_K_S.gguf) | Q3_K_S | 14.392 GB | very small, high quality loss |
| [FluentlyLM-Prinum-Q3_K_M.gguf](https://huggingface.co/tensorblock/FluentlyLM-Prinum-GGUF/blob/main/FluentlyLM-Prinum-Q3_K_M.gguf) | Q3_K_M | 15.935 GB | very small, high quality loss |
| [FluentlyLM-Prinum-Q3_K_L.gguf](https://huggingface.co/tensorblock/FluentlyLM-Prinum-GGUF/blob/main/FluentlyLM-Prinum-Q3_K_L.gguf) | Q3_K_L | 17.247 GB | small, substantial quality loss |
| [FluentlyLM-Prinum-Q4_0.gguf](https://huggingface.co/tensorblock/FluentlyLM-Prinum-GGUF/blob/main/FluentlyLM-Prinum-Q4_0.gguf) | Q4_0 | 18.640 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [FluentlyLM-Prinum-Q4_K_S.gguf](https://huggingface.co/tensorblock/FluentlyLM-Prinum-GGUF/blob/main/FluentlyLM-Prinum-Q4_K_S.gguf) | Q4_K_S | 18.784 GB | small, greater quality loss |
| [FluentlyLM-Prinum-Q4_K_M.gguf](https://huggingface.co/tensorblock/FluentlyLM-Prinum-GGUF/blob/main/FluentlyLM-Prinum-Q4_K_M.gguf) | Q4_K_M | 19.851 GB | medium, balanced quality - recommended |
| [FluentlyLM-Prinum-Q5_0.gguf](https://huggingface.co/tensorblock/FluentlyLM-Prinum-GGUF/blob/main/FluentlyLM-Prinum-Q5_0.gguf) | Q5_0 | 22.638 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [FluentlyLM-Prinum-Q5_K_S.gguf](https://huggingface.co/tensorblock/FluentlyLM-Prinum-GGUF/blob/main/FluentlyLM-Prinum-Q5_K_S.gguf) | Q5_K_S | 22.638 GB | large, low quality loss - recommended |
| [FluentlyLM-Prinum-Q5_K_M.gguf](https://huggingface.co/tensorblock/FluentlyLM-Prinum-GGUF/blob/main/FluentlyLM-Prinum-Q5_K_M.gguf) | Q5_K_M | 23.262 GB | large, very low quality loss - recommended |
| [FluentlyLM-Prinum-Q6_K.gguf](https://huggingface.co/tensorblock/FluentlyLM-Prinum-GGUF/blob/main/FluentlyLM-Prinum-Q6_K.gguf) | Q6_K | 26.886 GB | very large, extremely low quality loss |
| [FluentlyLM-Prinum-Q8_0.gguf](https://huggingface.co/tensorblock/FluentlyLM-Prinum-GGUF/blob/main/FluentlyLM-Prinum-Q8_0.gguf) | Q8_0 | 34.821 GB | very large, extremely low quality loss - not recommended |


## Downloading instruction

### Command line

Firstly, install Huggingface Client

```shell
pip install -U "huggingface_hub[cli]"
```

Then, downoad the individual model file the a local directory

```shell
huggingface-cli download tensorblock/FluentlyLM-Prinum-GGUF --include "FluentlyLM-Prinum-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```

If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:

```shell
huggingface-cli download tensorblock/FluentlyLM-Prinum-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```