--- base_model: Daemontatox/Llama3.3-70B-CogniLink tags: - state-of-the-art - reasoning - chain-of-thought - text-generation - transformers - llama - instruction-tuning - TensorBlock - GGUF license: apache-2.0 language: - en datasets: - Daemontatox/Deepthinking-COT - gghfez/QwQ-LongCoT-130K-cleaned pipeline_tag: text-generation library_name: transformers model-index: - name: Llama3.3-70B-CogniLink results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: wis-k/instruction-following-eval split: train args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 69.31 name: averaged accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FLlama3.3-70B-CogniLink name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: SaylorTwift/bbh split: test args: num_few_shot: 3 metrics: - type: acc_norm value: 52.12 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FLlama3.3-70B-CogniLink name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: lighteval/MATH-Hard split: test args: num_few_shot: 4 metrics: - type: exact_match value: 39.58 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FLlama3.3-70B-CogniLink name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa split: train args: num_few_shot: 0 metrics: - type: acc_norm value: 26.06 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FLlama3.3-70B-CogniLink name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 21.4 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FLlama3.3-70B-CogniLink name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 46.37 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FLlama3.3-70B-CogniLink name: Open LLM Leaderboard ---
TensorBlock
[![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## Daemontatox/Llama3.3-70B-CogniLink - GGUF This repo contains GGUF format model files for [Daemontatox/Llama3.3-70B-CogniLink](https://huggingface.co/Daemontatox/Llama3.3-70B-CogniLink). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4823](https://github.com/ggml-org/llama.cpp/commit/5bbe6a9fe9a8796a9389c85accec89dbc4d91e39). ## Our projects
Awesome MCP Servers TensorBlock Studio
Project A Project B
A comprehensive collection of Model Context Protocol (MCP) servers. A lightweight, open, and extensible multi-LLM interaction studio.
👀 See what we built 👀 👀 See what we built 👀
## Prompt template ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Llama3.3-70B-CogniLink-Q2_K.gguf](https://huggingface.co/tensorblock/Llama3.3-70B-CogniLink-GGUF/blob/main/Llama3.3-70B-CogniLink-Q2_K.gguf) | Q2_K | 26.375 GB | smallest, significant quality loss - not recommended for most purposes | | [Llama3.3-70B-CogniLink-Q3_K_S.gguf](https://huggingface.co/tensorblock/Llama3.3-70B-CogniLink-GGUF/blob/main/Llama3.3-70B-CogniLink-Q3_K_S.gguf) | Q3_K_S | 30.912 GB | very small, high quality loss | | [Llama3.3-70B-CogniLink-Q3_K_M.gguf](https://huggingface.co/tensorblock/Llama3.3-70B-CogniLink-GGUF/blob/main/Llama3.3-70B-CogniLink-Q3_K_M.gguf) | Q3_K_M | 34.267 GB | very small, high quality loss | | [Llama3.3-70B-CogniLink-Q3_K_L.gguf](https://huggingface.co/tensorblock/Llama3.3-70B-CogniLink-GGUF/blob/main/Llama3.3-70B-CogniLink-Q3_K_L.gguf) | Q3_K_L | 37.141 GB | small, substantial quality loss | | [Llama3.3-70B-CogniLink-Q4_0.gguf](https://huggingface.co/tensorblock/Llama3.3-70B-CogniLink-GGUF/blob/main/Llama3.3-70B-CogniLink-Q4_0.gguf) | Q4_0 | 39.970 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Llama3.3-70B-CogniLink-Q4_K_S.gguf](https://huggingface.co/tensorblock/Llama3.3-70B-CogniLink-GGUF/blob/main/Llama3.3-70B-CogniLink-Q4_K_S.gguf) | Q4_K_S | 40.347 GB | small, greater quality loss | | [Llama3.3-70B-CogniLink-Q4_K_M.gguf](https://huggingface.co/tensorblock/Llama3.3-70B-CogniLink-GGUF/blob/main/Llama3.3-70B-CogniLink-Q4_K_M.gguf) | Q4_K_M | 42.520 GB | medium, balanced quality - recommended | | [Llama3.3-70B-CogniLink-Q5_0.gguf](https://huggingface.co/tensorblock/Llama3.3-70B-CogniLink-GGUF/blob/main/Llama3.3-70B-CogniLink-Q5_0.gguf) | Q5_0 | 48.657 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Llama3.3-70B-CogniLink-Q5_K_S.gguf](https://huggingface.co/tensorblock/Llama3.3-70B-CogniLink-GGUF/blob/main/Llama3.3-70B-CogniLink-Q5_K_S.gguf) | Q5_K_S | 48.657 GB | large, low quality loss - recommended | | [Llama3.3-70B-CogniLink-Q5_K_M.gguf](https://huggingface.co/tensorblock/Llama3.3-70B-CogniLink-GGUF/blob/main/Llama3.3-70B-CogniLink-Q5_K_M.gguf) | Q5_K_M | 49.950 GB | large, very low quality loss - recommended | | [Llama3.3-70B-CogniLink-Q6_K](https://huggingface.co/tensorblock/Llama3.3-70B-CogniLink-GGUF/blob/main/Llama3.3-70B-CogniLink-Q6_K) | Q6_K | 57.888 GB | very large, extremely low quality loss | | [Llama3.3-70B-CogniLink-Q8_0](https://huggingface.co/tensorblock/Llama3.3-70B-CogniLink-GGUF/blob/main/Llama3.3-70B-CogniLink-Q8_0) | Q8_0 | 74.975 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Llama3.3-70B-CogniLink-GGUF --include "Llama3.3-70B-CogniLink-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Llama3.3-70B-CogniLink-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```