--- language: - en license: apache-2.0 datasets: - Locutusque/TM-DATA-V2 - LLM360/TxT360 - mlfoundations/dclm-baseline-1.0 - Skylion007/openwebtext - JeanKaddour/minipile - eminorhan/gutenberg_en tags: - TensorBlock - GGUF base_model: M4-ai/TinyMistral-248M-v3 model-index: - name: TinyMistral-248M-v3 results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 16.39 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=M4-ai/TinyMistral-248M-v3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 1.78 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=M4-ai/TinyMistral-248M-v3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 0.0 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=M4-ai/TinyMistral-248M-v3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 0.0 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=M4-ai/TinyMistral-248M-v3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 5.15 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=M4-ai/TinyMistral-248M-v3 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 1.47 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=M4-ai/TinyMistral-248M-v3 name: Open LLM Leaderboard ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## M4-ai/TinyMistral-248M-v3 - GGUF This repo contains GGUF format model files for [M4-ai/TinyMistral-248M-v3](https://huggingface.co/M4-ai/TinyMistral-248M-v3). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985). ## Our projects
Awesome MCP Servers TensorBlock Studio
Project A Project B
A comprehensive collection of Model Context Protocol (MCP) servers. A lightweight, open, and extensible multi-LLM interaction studio.
👀 See what we built 👀 👀 See what we built 👀
## Prompt template ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [TinyMistral-248M-v3-Q2_K.gguf](https://huggingface.co/tensorblock/M4-ai_TinyMistral-248M-v3-GGUF/blob/main/TinyMistral-248M-v3-Q2_K.gguf) | Q2_K | 0.105 GB | smallest, significant quality loss - not recommended for most purposes | | [TinyMistral-248M-v3-Q3_K_S.gguf](https://huggingface.co/tensorblock/M4-ai_TinyMistral-248M-v3-GGUF/blob/main/TinyMistral-248M-v3-Q3_K_S.gguf) | Q3_K_S | 0.120 GB | very small, high quality loss | | [TinyMistral-248M-v3-Q3_K_M.gguf](https://huggingface.co/tensorblock/M4-ai_TinyMistral-248M-v3-GGUF/blob/main/TinyMistral-248M-v3-Q3_K_M.gguf) | Q3_K_M | 0.129 GB | very small, high quality loss | | [TinyMistral-248M-v3-Q3_K_L.gguf](https://huggingface.co/tensorblock/M4-ai_TinyMistral-248M-v3-GGUF/blob/main/TinyMistral-248M-v3-Q3_K_L.gguf) | Q3_K_L | 0.137 GB | small, substantial quality loss | | [TinyMistral-248M-v3-Q4_0.gguf](https://huggingface.co/tensorblock/M4-ai_TinyMistral-248M-v3-GGUF/blob/main/TinyMistral-248M-v3-Q4_0.gguf) | Q4_0 | 0.149 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [TinyMistral-248M-v3-Q4_K_S.gguf](https://huggingface.co/tensorblock/M4-ai_TinyMistral-248M-v3-GGUF/blob/main/TinyMistral-248M-v3-Q4_K_S.gguf) | Q4_K_S | 0.149 GB | small, greater quality loss | | [TinyMistral-248M-v3-Q4_K_M.gguf](https://huggingface.co/tensorblock/M4-ai_TinyMistral-248M-v3-GGUF/blob/main/TinyMistral-248M-v3-Q4_K_M.gguf) | Q4_K_M | 0.156 GB | medium, balanced quality - recommended | | [TinyMistral-248M-v3-Q5_0.gguf](https://huggingface.co/tensorblock/M4-ai_TinyMistral-248M-v3-GGUF/blob/main/TinyMistral-248M-v3-Q5_0.gguf) | Q5_0 | 0.176 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [TinyMistral-248M-v3-Q5_K_S.gguf](https://huggingface.co/tensorblock/M4-ai_TinyMistral-248M-v3-GGUF/blob/main/TinyMistral-248M-v3-Q5_K_S.gguf) | Q5_K_S | 0.176 GB | large, low quality loss - recommended | | [TinyMistral-248M-v3-Q5_K_M.gguf](https://huggingface.co/tensorblock/M4-ai_TinyMistral-248M-v3-GGUF/blob/main/TinyMistral-248M-v3-Q5_K_M.gguf) | Q5_K_M | 0.179 GB | large, very low quality loss - recommended | | [TinyMistral-248M-v3-Q6_K.gguf](https://huggingface.co/tensorblock/M4-ai_TinyMistral-248M-v3-GGUF/blob/main/TinyMistral-248M-v3-Q6_K.gguf) | Q6_K | 0.204 GB | very large, extremely low quality loss | | [TinyMistral-248M-v3-Q8_0.gguf](https://huggingface.co/tensorblock/M4-ai_TinyMistral-248M-v3-GGUF/blob/main/TinyMistral-248M-v3-Q8_0.gguf) | Q8_0 | 0.264 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/M4-ai_TinyMistral-248M-v3-GGUF --include "TinyMistral-248M-v3-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/M4-ai_TinyMistral-248M-v3-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```