---
language:
- en
license: apache-2.0
datasets:
- Locutusque/TM-DATA-V2
- LLM360/TxT360
- mlfoundations/dclm-baseline-1.0
- Skylion007/openwebtext
- JeanKaddour/minipile
- eminorhan/gutenberg_en
tags:
- TensorBlock
- GGUF
base_model: M4-ai/TinyMistral-248M-v3
model-index:
- name: TinyMistral-248M-v3
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 16.39
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=M4-ai/TinyMistral-248M-v3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 1.78
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=M4-ai/TinyMistral-248M-v3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 0.0
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=M4-ai/TinyMistral-248M-v3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 0.0
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=M4-ai/TinyMistral-248M-v3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 5.15
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=M4-ai/TinyMistral-248M-v3
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 1.47
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=M4-ai/TinyMistral-248M-v3
name: Open LLM Leaderboard
---
## M4-ai/TinyMistral-248M-v3 - GGUF
This repo contains GGUF format model files for [M4-ai/TinyMistral-248M-v3](https://huggingface.co/M4-ai/TinyMistral-248M-v3).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985).
## Our projects
## Prompt template
```
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [TinyMistral-248M-v3-Q2_K.gguf](https://huggingface.co/tensorblock/M4-ai_TinyMistral-248M-v3-GGUF/blob/main/TinyMistral-248M-v3-Q2_K.gguf) | Q2_K | 0.105 GB | smallest, significant quality loss - not recommended for most purposes |
| [TinyMistral-248M-v3-Q3_K_S.gguf](https://huggingface.co/tensorblock/M4-ai_TinyMistral-248M-v3-GGUF/blob/main/TinyMistral-248M-v3-Q3_K_S.gguf) | Q3_K_S | 0.120 GB | very small, high quality loss |
| [TinyMistral-248M-v3-Q3_K_M.gguf](https://huggingface.co/tensorblock/M4-ai_TinyMistral-248M-v3-GGUF/blob/main/TinyMistral-248M-v3-Q3_K_M.gguf) | Q3_K_M | 0.129 GB | very small, high quality loss |
| [TinyMistral-248M-v3-Q3_K_L.gguf](https://huggingface.co/tensorblock/M4-ai_TinyMistral-248M-v3-GGUF/blob/main/TinyMistral-248M-v3-Q3_K_L.gguf) | Q3_K_L | 0.137 GB | small, substantial quality loss |
| [TinyMistral-248M-v3-Q4_0.gguf](https://huggingface.co/tensorblock/M4-ai_TinyMistral-248M-v3-GGUF/blob/main/TinyMistral-248M-v3-Q4_0.gguf) | Q4_0 | 0.149 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [TinyMistral-248M-v3-Q4_K_S.gguf](https://huggingface.co/tensorblock/M4-ai_TinyMistral-248M-v3-GGUF/blob/main/TinyMistral-248M-v3-Q4_K_S.gguf) | Q4_K_S | 0.149 GB | small, greater quality loss |
| [TinyMistral-248M-v3-Q4_K_M.gguf](https://huggingface.co/tensorblock/M4-ai_TinyMistral-248M-v3-GGUF/blob/main/TinyMistral-248M-v3-Q4_K_M.gguf) | Q4_K_M | 0.156 GB | medium, balanced quality - recommended |
| [TinyMistral-248M-v3-Q5_0.gguf](https://huggingface.co/tensorblock/M4-ai_TinyMistral-248M-v3-GGUF/blob/main/TinyMistral-248M-v3-Q5_0.gguf) | Q5_0 | 0.176 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [TinyMistral-248M-v3-Q5_K_S.gguf](https://huggingface.co/tensorblock/M4-ai_TinyMistral-248M-v3-GGUF/blob/main/TinyMistral-248M-v3-Q5_K_S.gguf) | Q5_K_S | 0.176 GB | large, low quality loss - recommended |
| [TinyMistral-248M-v3-Q5_K_M.gguf](https://huggingface.co/tensorblock/M4-ai_TinyMistral-248M-v3-GGUF/blob/main/TinyMistral-248M-v3-Q5_K_M.gguf) | Q5_K_M | 0.179 GB | large, very low quality loss - recommended |
| [TinyMistral-248M-v3-Q6_K.gguf](https://huggingface.co/tensorblock/M4-ai_TinyMistral-248M-v3-GGUF/blob/main/TinyMistral-248M-v3-Q6_K.gguf) | Q6_K | 0.204 GB | very large, extremely low quality loss |
| [TinyMistral-248M-v3-Q8_0.gguf](https://huggingface.co/tensorblock/M4-ai_TinyMistral-248M-v3-GGUF/blob/main/TinyMistral-248M-v3-Q8_0.gguf) | Q8_0 | 0.264 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/M4-ai_TinyMistral-248M-v3-GGUF --include "TinyMistral-248M-v3-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/M4-ai_TinyMistral-248M-v3-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```