--- license: mit license_link: https://huggingface.co/huihui-ai/Phi-4-mini-instruct-abliterated/resolve/main/LICENSE language: - multilingual - ar - zh - cs - da - nl - en - fi - fr - de - he - hu - it - ja - ko - 'no' - pl - pt - ru - es - sv - th - tr - uk pipeline_tag: text-generation base_model: huihui-ai/Phi-4-mini-instruct-abliterated tags: - nlp - code - abliterated - uncensored - TensorBlock - GGUF widget: - messages: - role: user content: Can you provide ways to eat combinations of bananas and dragonfruits? library_name: transformers ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## huihui-ai/Phi-4-mini-instruct-abliterated - GGUF This repo contains GGUF format model files for [huihui-ai/Phi-4-mini-instruct-abliterated](https://huggingface.co/huihui-ai/Phi-4-mini-instruct-abliterated). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4882](https://github.com/ggml-org/llama.cpp/commit/be7c3034108473beda214fd1d7c98fd6a7a3bdf5). ## Our projects
Awesome MCP Servers TensorBlock Studio
Project A Project B
A comprehensive collection of Model Context Protocol (MCP) servers. A lightweight, open, and extensible multi-LLM interaction studio.
👀 See what we built 👀 👀 See what we built 👀
## Prompt template ``` <|system|>{system_prompt}<|end|><|user|>{prompt}<|end|><|assistant|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Phi-4-mini-instruct-abliterated-Q2_K.gguf](https://huggingface.co/tensorblock/Phi-4-mini-instruct-abliterated-GGUF/blob/main/Phi-4-mini-instruct-abliterated-Q2_K.gguf) | Q2_K | 1.683 GB | smallest, significant quality loss - not recommended for most purposes | | [Phi-4-mini-instruct-abliterated-Q3_K_S.gguf](https://huggingface.co/tensorblock/Phi-4-mini-instruct-abliterated-GGUF/blob/main/Phi-4-mini-instruct-abliterated-Q3_K_S.gguf) | Q3_K_S | 1.897 GB | very small, high quality loss | | [Phi-4-mini-instruct-abliterated-Q3_K_M.gguf](https://huggingface.co/tensorblock/Phi-4-mini-instruct-abliterated-GGUF/blob/main/Phi-4-mini-instruct-abliterated-Q3_K_M.gguf) | Q3_K_M | 2.118 GB | very small, high quality loss | | [Phi-4-mini-instruct-abliterated-Q3_K_L.gguf](https://huggingface.co/tensorblock/Phi-4-mini-instruct-abliterated-GGUF/blob/main/Phi-4-mini-instruct-abliterated-Q3_K_L.gguf) | Q3_K_L | 2.250 GB | small, substantial quality loss | | [Phi-4-mini-instruct-abliterated-Q4_0.gguf](https://huggingface.co/tensorblock/Phi-4-mini-instruct-abliterated-GGUF/blob/main/Phi-4-mini-instruct-abliterated-Q4_0.gguf) | Q4_0 | 2.325 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Phi-4-mini-instruct-abliterated-Q4_K_S.gguf](https://huggingface.co/tensorblock/Phi-4-mini-instruct-abliterated-GGUF/blob/main/Phi-4-mini-instruct-abliterated-Q4_K_S.gguf) | Q4_K_S | 2.338 GB | small, greater quality loss | | [Phi-4-mini-instruct-abliterated-Q4_K_M.gguf](https://huggingface.co/tensorblock/Phi-4-mini-instruct-abliterated-GGUF/blob/main/Phi-4-mini-instruct-abliterated-Q4_K_M.gguf) | Q4_K_M | 2.492 GB | medium, balanced quality - recommended | | [Phi-4-mini-instruct-abliterated-Q5_0.gguf](https://huggingface.co/tensorblock/Phi-4-mini-instruct-abliterated-GGUF/blob/main/Phi-4-mini-instruct-abliterated-Q5_0.gguf) | Q5_0 | 2.728 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Phi-4-mini-instruct-abliterated-Q5_K_S.gguf](https://huggingface.co/tensorblock/Phi-4-mini-instruct-abliterated-GGUF/blob/main/Phi-4-mini-instruct-abliterated-Q5_K_S.gguf) | Q5_K_S | 2.728 GB | large, low quality loss - recommended | | [Phi-4-mini-instruct-abliterated-Q5_K_M.gguf](https://huggingface.co/tensorblock/Phi-4-mini-instruct-abliterated-GGUF/blob/main/Phi-4-mini-instruct-abliterated-Q5_K_M.gguf) | Q5_K_M | 2.848 GB | large, very low quality loss - recommended | | [Phi-4-mini-instruct-abliterated-Q6_K.gguf](https://huggingface.co/tensorblock/Phi-4-mini-instruct-abliterated-GGUF/blob/main/Phi-4-mini-instruct-abliterated-Q6_K.gguf) | Q6_K | 3.156 GB | very large, extremely low quality loss | | [Phi-4-mini-instruct-abliterated-Q8_0.gguf](https://huggingface.co/tensorblock/Phi-4-mini-instruct-abliterated-GGUF/blob/main/Phi-4-mini-instruct-abliterated-Q8_0.gguf) | Q8_0 | 4.085 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Phi-4-mini-instruct-abliterated-GGUF --include "Phi-4-mini-instruct-abliterated-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Phi-4-mini-instruct-abliterated-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```