--- license: other license_name: yi-license license_link: https://huggingface.co/cognitivecomputations/dolphin-2.2-yi-34b-200k/blob/main/LICENSE tags: - TensorBlock - GGUF base_model: macadeliccc/SmaugDolphin-60B model-index: - name: SmaugDolphin-60B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 73.38 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SmaugDolphin-60B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.55 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SmaugDolphin-60B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 76.78 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SmaugDolphin-60B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 67.44 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SmaugDolphin-60B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.5 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SmaugDolphin-60B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 70.96 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SmaugDolphin-60B name: Open LLM Leaderboard ---
TensorBlock
[![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## macadeliccc/SmaugDolphin-60B - GGUF This repo contains GGUF format model files for [macadeliccc/SmaugDolphin-60B](https://huggingface.co/macadeliccc/SmaugDolphin-60B). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects
Awesome MCP Servers TensorBlock Studio
Project A Project B
A comprehensive collection of Model Context Protocol (MCP) servers. A lightweight, open, and extensible multi-LLM interaction studio.
👀 See what we built 👀 👀 See what we built 👀
## Prompt template ``` [INST] <> {system_prompt} <> {prompt} [/INST] ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [SmaugDolphin-60B-Q2_K.gguf](https://huggingface.co/tensorblock/SmaugDolphin-60B-GGUF/blob/main/SmaugDolphin-60B-Q2_K.gguf) | Q2_K | 22.394 GB | smallest, significant quality loss - not recommended for most purposes | | [SmaugDolphin-60B-Q3_K_S.gguf](https://huggingface.co/tensorblock/SmaugDolphin-60B-GGUF/blob/main/SmaugDolphin-60B-Q3_K_S.gguf) | Q3_K_S | 26.318 GB | very small, high quality loss | | [SmaugDolphin-60B-Q3_K_M.gguf](https://huggingface.co/tensorblock/SmaugDolphin-60B-GGUF/blob/main/SmaugDolphin-60B-Q3_K_M.gguf) | Q3_K_M | 29.237 GB | very small, high quality loss | | [SmaugDolphin-60B-Q3_K_L.gguf](https://huggingface.co/tensorblock/SmaugDolphin-60B-GGUF/blob/main/SmaugDolphin-60B-Q3_K_L.gguf) | Q3_K_L | 31.768 GB | small, substantial quality loss | | [SmaugDolphin-60B-Q4_0.gguf](https://huggingface.co/tensorblock/SmaugDolphin-60B-GGUF/blob/main/SmaugDolphin-60B-Q4_0.gguf) | Q4_0 | 34.334 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [SmaugDolphin-60B-Q4_K_S.gguf](https://huggingface.co/tensorblock/SmaugDolphin-60B-GGUF/blob/main/SmaugDolphin-60B-Q4_K_S.gguf) | Q4_K_S | 34.594 GB | small, greater quality loss | | [SmaugDolphin-60B-Q4_K_M.gguf](https://huggingface.co/tensorblock/SmaugDolphin-60B-GGUF/blob/main/SmaugDolphin-60B-Q4_K_M.gguf) | Q4_K_M | 36.661 GB | medium, balanced quality - recommended | | [SmaugDolphin-60B-Q5_0.gguf](https://huggingface.co/tensorblock/SmaugDolphin-60B-GGUF/blob/main/SmaugDolphin-60B-Q5_0.gguf) | Q5_0 | 41.878 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [SmaugDolphin-60B-Q5_K_S.gguf](https://huggingface.co/tensorblock/SmaugDolphin-60B-GGUF/blob/main/SmaugDolphin-60B-Q5_K_S.gguf) | Q5_K_S | 41.878 GB | large, low quality loss - recommended | | [SmaugDolphin-60B-Q5_K_M.gguf](https://huggingface.co/tensorblock/SmaugDolphin-60B-GGUF/blob/main/SmaugDolphin-60B-Q5_K_M.gguf) | Q5_K_M | 43.077 GB | large, very low quality loss - recommended | | [SmaugDolphin-60B-Q6_K.gguf](https://huggingface.co/tensorblock/SmaugDolphin-60B-GGUF/blob/main/SmaugDolphin-60B-Q6_K.gguf) | Q6_K | 49.893 GB | very large, extremely low quality loss | | [SmaugDolphin-60B-Q8_0](https://huggingface.co/tensorblock/SmaugDolphin-60B-GGUF/blob/main/SmaugDolphin-60B-Q8_0) | Q8_0 | 64.621 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/SmaugDolphin-60B-GGUF --include "SmaugDolphin-60B-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/SmaugDolphin-60B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```