---
library_name: transformers
license: gemma
widget:
- messages:
- role: user
content: How does the brain work?
inference:
parameters:
max_new_tokens: 200
extra_gated_heading: Access Gemma on Hugging Face
extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and
agree to Google’s usage license. To do this, please ensure you’re logged-in to Hugging
Face and click below. Requests are processed immediately.
extra_gated_button_content: Acknowledge license
base_model: google/gemma-1.1-7b-it
tags:
- TensorBlock
- GGUF
---
## google/gemma-1.1-7b-it - GGUF
This repo contains GGUF format model files for [google/gemma-1.1-7b-it](https://huggingface.co/google/gemma-1.1-7b-it).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Prompt template
```
user
{prompt}
model
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [gemma-1.1-7b-it-Q2_K.gguf](https://huggingface.co/tensorblock/gemma-1.1-7b-it-GGUF/blob/main/gemma-1.1-7b-it-Q2_K.gguf) | Q2_K | 3.481 GB | smallest, significant quality loss - not recommended for most purposes |
| [gemma-1.1-7b-it-Q3_K_S.gguf](https://huggingface.co/tensorblock/gemma-1.1-7b-it-GGUF/blob/main/gemma-1.1-7b-it-Q3_K_S.gguf) | Q3_K_S | 3.982 GB | very small, high quality loss |
| [gemma-1.1-7b-it-Q3_K_M.gguf](https://huggingface.co/tensorblock/gemma-1.1-7b-it-GGUF/blob/main/gemma-1.1-7b-it-Q3_K_M.gguf) | Q3_K_M | 4.369 GB | very small, high quality loss |
| [gemma-1.1-7b-it-Q3_K_L.gguf](https://huggingface.co/tensorblock/gemma-1.1-7b-it-GGUF/blob/main/gemma-1.1-7b-it-Q3_K_L.gguf) | Q3_K_L | 4.709 GB | small, substantial quality loss |
| [gemma-1.1-7b-it-Q4_0.gguf](https://huggingface.co/tensorblock/gemma-1.1-7b-it-GGUF/blob/main/gemma-1.1-7b-it-Q4_0.gguf) | Q4_0 | 5.012 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [gemma-1.1-7b-it-Q4_K_S.gguf](https://huggingface.co/tensorblock/gemma-1.1-7b-it-GGUF/blob/main/gemma-1.1-7b-it-Q4_K_S.gguf) | Q4_K_S | 5.046 GB | small, greater quality loss |
| [gemma-1.1-7b-it-Q4_K_M.gguf](https://huggingface.co/tensorblock/gemma-1.1-7b-it-GGUF/blob/main/gemma-1.1-7b-it-Q4_K_M.gguf) | Q4_K_M | 5.330 GB | medium, balanced quality - recommended |
| [gemma-1.1-7b-it-Q5_0.gguf](https://huggingface.co/tensorblock/gemma-1.1-7b-it-GGUF/blob/main/gemma-1.1-7b-it-Q5_0.gguf) | Q5_0 | 5.981 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [gemma-1.1-7b-it-Q5_K_S.gguf](https://huggingface.co/tensorblock/gemma-1.1-7b-it-GGUF/blob/main/gemma-1.1-7b-it-Q5_K_S.gguf) | Q5_K_S | 5.981 GB | large, low quality loss - recommended |
| [gemma-1.1-7b-it-Q5_K_M.gguf](https://huggingface.co/tensorblock/gemma-1.1-7b-it-GGUF/blob/main/gemma-1.1-7b-it-Q5_K_M.gguf) | Q5_K_M | 6.145 GB | large, very low quality loss - recommended |
| [gemma-1.1-7b-it-Q6_K.gguf](https://huggingface.co/tensorblock/gemma-1.1-7b-it-GGUF/blob/main/gemma-1.1-7b-it-Q6_K.gguf) | Q6_K | 7.010 GB | very large, extremely low quality loss |
| [gemma-1.1-7b-it-Q8_0.gguf](https://huggingface.co/tensorblock/gemma-1.1-7b-it-GGUF/blob/main/gemma-1.1-7b-it-Q8_0.gguf) | Q8_0 | 9.078 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/gemma-1.1-7b-it-GGUF --include "gemma-1.1-7b-it-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/gemma-1.1-7b-it-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```