---
base_model: lastmass/Qwen3_Medical_GRPO
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
- vllm
- medical
- TensorBlock
- GGUF
license: apache-2.0
language:
- en
- zh
datasets:
- FreedomIntelligence/medical-o1-reasoning-SFT
- lastmass/medical-o1-reasoning-SFT-keywords
---
[](https://tensorblock.co)
[](https://twitter.com/tensorblock_aoi)
[](https://discord.gg/Ej5NmeHFf2)
[](https://github.com/TensorBlock)
[](https://t.me/TensorBlock)
## lastmass/Qwen3_Medical_GRPO - GGUF
This repo contains GGUF format model files for [lastmass/Qwen3_Medical_GRPO](https://huggingface.co/lastmass/Qwen3_Medical_GRPO).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5753](https://github.com/ggml-org/llama.cpp/commit/73e53dc834c0a2336cd104473af6897197b96277).
## Our projects
Forge |
|
An OpenAI-compatible multi-provider routing layer. |
🚀 Try it now! 🚀
|
Awesome MCP Servers |
TensorBlock Studio |
 |
 |
A comprehensive collection of Model Context Protocol (MCP) servers. |
A lightweight, open, and extensible multi-LLM interaction studio. |
👀 See what we built 👀
|
👀 See what we built 👀
|
## Prompt template
```
{system_prompt}<|endoftext|>{prompt}
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Qwen3_Medical_GRPO-Q2_K.gguf](https://huggingface.co/tensorblock/lastmass_Qwen3_Medical_GRPO-GGUF/blob/main/Qwen3_Medical_GRPO-Q2_K.gguf) | Q2_K | 1.669 GB | smallest, significant quality loss - not recommended for most purposes |
| [Qwen3_Medical_GRPO-Q3_K_S.gguf](https://huggingface.co/tensorblock/lastmass_Qwen3_Medical_GRPO-GGUF/blob/main/Qwen3_Medical_GRPO-Q3_K_S.gguf) | Q3_K_S | 1.887 GB | very small, high quality loss |
| [Qwen3_Medical_GRPO-Q3_K_M.gguf](https://huggingface.co/tensorblock/lastmass_Qwen3_Medical_GRPO-GGUF/blob/main/Qwen3_Medical_GRPO-Q3_K_M.gguf) | Q3_K_M | 2.076 GB | very small, high quality loss |
| [Qwen3_Medical_GRPO-Q3_K_L.gguf](https://huggingface.co/tensorblock/lastmass_Qwen3_Medical_GRPO-GGUF/blob/main/Qwen3_Medical_GRPO-Q3_K_L.gguf) | Q3_K_L | 2.240 GB | small, substantial quality loss |
| [Qwen3_Medical_GRPO-Q4_0.gguf](https://huggingface.co/tensorblock/lastmass_Qwen3_Medical_GRPO-GGUF/blob/main/Qwen3_Medical_GRPO-Q4_0.gguf) | Q4_0 | 2.370 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Qwen3_Medical_GRPO-Q4_K_S.gguf](https://huggingface.co/tensorblock/lastmass_Qwen3_Medical_GRPO-GGUF/blob/main/Qwen3_Medical_GRPO-Q4_K_S.gguf) | Q4_K_S | 2.383 GB | small, greater quality loss |
| [Qwen3_Medical_GRPO-Q4_K_M.gguf](https://huggingface.co/tensorblock/lastmass_Qwen3_Medical_GRPO-GGUF/blob/main/Qwen3_Medical_GRPO-Q4_K_M.gguf) | Q4_K_M | 2.497 GB | medium, balanced quality - recommended |
| [Qwen3_Medical_GRPO-Q5_0.gguf](https://huggingface.co/tensorblock/lastmass_Qwen3_Medical_GRPO-GGUF/blob/main/Qwen3_Medical_GRPO-Q5_0.gguf) | Q5_0 | 2.824 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Qwen3_Medical_GRPO-Q5_K_S.gguf](https://huggingface.co/tensorblock/lastmass_Qwen3_Medical_GRPO-GGUF/blob/main/Qwen3_Medical_GRPO-Q5_K_S.gguf) | Q5_K_S | 2.824 GB | large, low quality loss - recommended |
| [Qwen3_Medical_GRPO-Q5_K_M.gguf](https://huggingface.co/tensorblock/lastmass_Qwen3_Medical_GRPO-GGUF/blob/main/Qwen3_Medical_GRPO-Q5_K_M.gguf) | Q5_K_M | 2.890 GB | large, very low quality loss - recommended |
| [Qwen3_Medical_GRPO-Q6_K.gguf](https://huggingface.co/tensorblock/lastmass_Qwen3_Medical_GRPO-GGUF/blob/main/Qwen3_Medical_GRPO-Q6_K.gguf) | Q6_K | 3.306 GB | very large, extremely low quality loss |
| [Qwen3_Medical_GRPO-Q8_0.gguf](https://huggingface.co/tensorblock/lastmass_Qwen3_Medical_GRPO-GGUF/blob/main/Qwen3_Medical_GRPO-Q8_0.gguf) | Q8_0 | 4.280 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/lastmass_Qwen3_Medical_GRPO-GGUF --include "Qwen3_Medical_GRPO-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/lastmass_Qwen3_Medical_GRPO-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```