---
language:
- en
- zh
- id
- th
- vi
- ms
- lo
- my
- jv
- km
- su
- tl
tags:
- multilingual
- sea
- sailor
- TensorBlock
- GGUF
widget:
- text: 如何制作烤鱼?
example_title: Chinese
- text: How to bake fish?
example_title: English
- text: Bagaimana cara memanggang ikan?
example_title: Malay
- text: วิธีย่างปลา?
example_title: Thai
- text: Bagaimana membuat bakaran ikan?
example_title: Indonesian
- text: Làm thế nào để nướng cá?
example_title: Vietnamese
license: apache-2.0
base_model: sail/Sailor2-1B
library_name: transformers
pipeline_tag: text-generation
---
## sail/Sailor2-1B - GGUF
This repo contains GGUF format model files for [sail/Sailor2-1B](https://huggingface.co/sail/Sailor2-1B).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985).
## Our projects
Awesome MCP Servers |
TensorBlock Studio |
 |
 |
A comprehensive collection of Model Context Protocol (MCP) servers. |
A lightweight, open, and extensible multi-LLM interaction studio. |
👀 See what we built 👀
|
👀 See what we built 👀
|
## Prompt template
```
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Sailor2-1B-Q2_K.gguf](https://huggingface.co/tensorblock/sail_Sailor2-1B-GGUF/blob/main/Sailor2-1B-Q2_K.gguf) | Q2_K | 0.603 GB | smallest, significant quality loss - not recommended for most purposes |
| [Sailor2-1B-Q3_K_S.gguf](https://huggingface.co/tensorblock/sail_Sailor2-1B-GGUF/blob/main/Sailor2-1B-Q3_K_S.gguf) | Q3_K_S | 0.603 GB | very small, high quality loss |
| [Sailor2-1B-Q3_K_M.gguf](https://huggingface.co/tensorblock/sail_Sailor2-1B-GGUF/blob/main/Sailor2-1B-Q3_K_M.gguf) | Q3_K_M | 0.637 GB | very small, high quality loss |
| [Sailor2-1B-Q3_K_L.gguf](https://huggingface.co/tensorblock/sail_Sailor2-1B-GGUF/blob/main/Sailor2-1B-Q3_K_L.gguf) | Q3_K_L | 0.665 GB | small, substantial quality loss |
| [Sailor2-1B-Q4_0.gguf](https://huggingface.co/tensorblock/sail_Sailor2-1B-GGUF/blob/main/Sailor2-1B-Q4_0.gguf) | Q4_0 | 0.630 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Sailor2-1B-Q4_K_S.gguf](https://huggingface.co/tensorblock/sail_Sailor2-1B-GGUF/blob/main/Sailor2-1B-Q4_K_S.gguf) | Q4_K_S | 0.714 GB | small, greater quality loss |
| [Sailor2-1B-Q4_K_M.gguf](https://huggingface.co/tensorblock/sail_Sailor2-1B-GGUF/blob/main/Sailor2-1B-Q4_K_M.gguf) | Q4_K_M | 0.739 GB | medium, balanced quality - recommended |
| [Sailor2-1B-Q5_0.gguf](https://huggingface.co/tensorblock/sail_Sailor2-1B-GGUF/blob/main/Sailor2-1B-Q5_0.gguf) | Q5_0 | 0.737 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Sailor2-1B-Q5_K_S.gguf](https://huggingface.co/tensorblock/sail_Sailor2-1B-GGUF/blob/main/Sailor2-1B-Q5_K_S.gguf) | Q5_K_S | 0.777 GB | large, low quality loss - recommended |
| [Sailor2-1B-Q5_K_M.gguf](https://huggingface.co/tensorblock/sail_Sailor2-1B-GGUF/blob/main/Sailor2-1B-Q5_K_M.gguf) | Q5_K_M | 0.792 GB | large, very low quality loss - recommended |
| [Sailor2-1B-Q6_K.gguf](https://huggingface.co/tensorblock/sail_Sailor2-1B-GGUF/blob/main/Sailor2-1B-Q6_K.gguf) | Q6_K | 1.006 GB | very large, extremely low quality loss |
| [Sailor2-1B-Q8_0.gguf](https://huggingface.co/tensorblock/sail_Sailor2-1B-GGUF/blob/main/Sailor2-1B-Q8_0.gguf) | Q8_0 | 1.056 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/sail_Sailor2-1B-GGUF --include "Sailor2-1B-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/sail_Sailor2-1B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```