---
pipeline_tag: text-generation
library_name: transformers
language:
- en
thumbnail: '"https://cdn-uploads.huggingface.co/production/uploads/62f93f9477b722f1866398c2/69escIKmO-vEzFUj_m0WX.png"'
tags:
- text-generation
- uncensored
- direct-answer
- information-retrieval
- general-knowledge
- unfiltered
- amoral-ai
- TensorBlock
- GGUF
base_model: soob3123/GrayLine-Qwen3-14B
datasets:
- soob3123/GrayLine-QA
- soob3123/GrayLine-QA-Reasoning
license: apache-2.0
---
[](https://tensorblock.co)
[](https://twitter.com/tensorblock_aoi)
[](https://discord.gg/Ej5NmeHFf2)
[](https://github.com/TensorBlock)
[](https://t.me/TensorBlock)
## soob3123/GrayLine-Qwen3-14B - GGUF
This repo contains GGUF format model files for [soob3123/GrayLine-Qwen3-14B](https://huggingface.co/soob3123/GrayLine-Qwen3-14B).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5753](https://github.com/ggml-org/llama.cpp/commit/73e53dc834c0a2336cd104473af6897197b96277).
## Our projects
Forge |
|
An OpenAI-compatible multi-provider routing layer. |
🚀 Try it now! 🚀
|
Awesome MCP Servers |
TensorBlock Studio |
 |
 |
A comprehensive collection of Model Context Protocol (MCP) servers. |
A lightweight, open, and extensible multi-LLM interaction studio. |
👀 See what we built 👀
|
👀 See what we built 👀
|
## Prompt template
```
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [GrayLine-Qwen3-14B-Q2_K.gguf](https://huggingface.co/tensorblock/soob3123_GrayLine-Qwen3-14B-GGUF/blob/main/GrayLine-Qwen3-14B-Q2_K.gguf) | Q2_K | 5.754 GB | smallest, significant quality loss - not recommended for most purposes |
| [GrayLine-Qwen3-14B-Q3_K_S.gguf](https://huggingface.co/tensorblock/soob3123_GrayLine-Qwen3-14B-GGUF/blob/main/GrayLine-Qwen3-14B-Q3_K_S.gguf) | Q3_K_S | 6.657 GB | very small, high quality loss |
| [GrayLine-Qwen3-14B-Q3_K_M.gguf](https://huggingface.co/tensorblock/soob3123_GrayLine-Qwen3-14B-GGUF/blob/main/GrayLine-Qwen3-14B-Q3_K_M.gguf) | Q3_K_M | 7.321 GB | very small, high quality loss |
| [GrayLine-Qwen3-14B-Q3_K_L.gguf](https://huggingface.co/tensorblock/soob3123_GrayLine-Qwen3-14B-GGUF/blob/main/GrayLine-Qwen3-14B-Q3_K_L.gguf) | Q3_K_L | 7.901 GB | small, substantial quality loss |
| [GrayLine-Qwen3-14B-Q4_0.gguf](https://huggingface.co/tensorblock/soob3123_GrayLine-Qwen3-14B-GGUF/blob/main/GrayLine-Qwen3-14B-Q4_0.gguf) | Q4_0 | 8.515 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [GrayLine-Qwen3-14B-Q4_K_S.gguf](https://huggingface.co/tensorblock/soob3123_GrayLine-Qwen3-14B-GGUF/blob/main/GrayLine-Qwen3-14B-Q4_K_S.gguf) | Q4_K_S | 8.573 GB | small, greater quality loss |
| [GrayLine-Qwen3-14B-Q4_K_M.gguf](https://huggingface.co/tensorblock/soob3123_GrayLine-Qwen3-14B-GGUF/blob/main/GrayLine-Qwen3-14B-Q4_K_M.gguf) | Q4_K_M | 9.002 GB | medium, balanced quality - recommended |
| [GrayLine-Qwen3-14B-Q5_0.gguf](https://huggingface.co/tensorblock/soob3123_GrayLine-Qwen3-14B-GGUF/blob/main/GrayLine-Qwen3-14B-Q5_0.gguf) | Q5_0 | 10.264 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [GrayLine-Qwen3-14B-Q5_K_S.gguf](https://huggingface.co/tensorblock/soob3123_GrayLine-Qwen3-14B-GGUF/blob/main/GrayLine-Qwen3-14B-Q5_K_S.gguf) | Q5_K_S | 10.264 GB | large, low quality loss - recommended |
| [GrayLine-Qwen3-14B-Q5_K_M.gguf](https://huggingface.co/tensorblock/soob3123_GrayLine-Qwen3-14B-GGUF/blob/main/GrayLine-Qwen3-14B-Q5_K_M.gguf) | Q5_K_M | 10.515 GB | large, very low quality loss - recommended |
| [GrayLine-Qwen3-14B-Q6_K.gguf](https://huggingface.co/tensorblock/soob3123_GrayLine-Qwen3-14B-GGUF/blob/main/GrayLine-Qwen3-14B-Q6_K.gguf) | Q6_K | 12.122 GB | very large, extremely low quality loss |
| [GrayLine-Qwen3-14B-Q8_0.gguf](https://huggingface.co/tensorblock/soob3123_GrayLine-Qwen3-14B-GGUF/blob/main/GrayLine-Qwen3-14B-Q8_0.gguf) | Q8_0 | 15.699 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/soob3123_GrayLine-Qwen3-14B-GGUF --include "GrayLine-Qwen3-14B-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/soob3123_GrayLine-Qwen3-14B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```