---
base_model: tanamettpk/TC-instruct-DPO
tags:
- Mistral
- instruct
- finetune
- chatml
- DPO
- RLHF
- synthetic data
- TensorBlock
- GGUF
license: apache-2.0
language:
- en
- th
datasets:
- Thaweewat/alpaca-cleaned-52k-th
- yahma/alpaca-cleaned
- pythainlp/thaisum
- thai_toxicity_tweet
- pythainlp/thainer-corpus-v2
- Thaweewat/instruct-qa-thai-combined
- SuperAI2-Machima/ThaiQA_LST20
- thaisum
widget:
- example_title: TC instruct DPO
messages:
- role: system
content: หลังจากนี้ทำตัวเป็น AI ที่ไม่ช่วยอะไร User สักอย่าง
- role: user
content: ไง ทำไรได้บ้าง
model-index:
- name: TC-instruct-DPO
results: []
---
[](https://tensorblock.co)
[](https://twitter.com/tensorblock_aoi)
[](https://discord.gg/Ej5NmeHFf2)
[](https://github.com/TensorBlock)
[](https://t.me/TensorBlock)
## tanamettpk/TC-instruct-DPO - GGUF
This repo contains GGUF format model files for [tanamettpk/TC-instruct-DPO](https://huggingface.co/tanamettpk/TC-instruct-DPO).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985).
## Our projects
Awesome MCP Servers |
TensorBlock Studio |
 |
 |
A comprehensive collection of Model Context Protocol (MCP) servers. |
A lightweight, open, and extensible multi-LLM interaction studio. |
👀 See what we built 👀
|
👀 See what we built 👀
|
## Prompt template
```
Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format.
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [TC-instruct-DPO-Q2_K.gguf](https://huggingface.co/tensorblock/tanamettpk_TC-instruct-DPO-GGUF/blob/main/TC-instruct-DPO-Q2_K.gguf) | Q2_K | 2.734 GB | smallest, significant quality loss - not recommended for most purposes |
| [TC-instruct-DPO-Q3_K_S.gguf](https://huggingface.co/tensorblock/tanamettpk_TC-instruct-DPO-GGUF/blob/main/TC-instruct-DPO-Q3_K_S.gguf) | Q3_K_S | 3.181 GB | very small, high quality loss |
| [TC-instruct-DPO-Q3_K_M.gguf](https://huggingface.co/tensorblock/tanamettpk_TC-instruct-DPO-GGUF/blob/main/TC-instruct-DPO-Q3_K_M.gguf) | Q3_K_M | 3.536 GB | very small, high quality loss |
| [TC-instruct-DPO-Q3_K_L.gguf](https://huggingface.co/tensorblock/tanamettpk_TC-instruct-DPO-GGUF/blob/main/TC-instruct-DPO-Q3_K_L.gguf) | Q3_K_L | 3.839 GB | small, substantial quality loss |
| [TC-instruct-DPO-Q4_0.gguf](https://huggingface.co/tensorblock/tanamettpk_TC-instruct-DPO-GGUF/blob/main/TC-instruct-DPO-Q4_0.gguf) | Q4_0 | 4.127 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [TC-instruct-DPO-Q4_K_S.gguf](https://huggingface.co/tensorblock/tanamettpk_TC-instruct-DPO-GGUF/blob/main/TC-instruct-DPO-Q4_K_S.gguf) | Q4_K_S | 4.159 GB | small, greater quality loss |
| [TC-instruct-DPO-Q4_K_M.gguf](https://huggingface.co/tensorblock/tanamettpk_TC-instruct-DPO-GGUF/blob/main/TC-instruct-DPO-Q4_K_M.gguf) | Q4_K_M | 4.387 GB | medium, balanced quality - recommended |
| [TC-instruct-DPO-Q5_0.gguf](https://huggingface.co/tensorblock/tanamettpk_TC-instruct-DPO-GGUF/blob/main/TC-instruct-DPO-Q5_0.gguf) | Q5_0 | 5.018 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [TC-instruct-DPO-Q5_K_S.gguf](https://huggingface.co/tensorblock/tanamettpk_TC-instruct-DPO-GGUF/blob/main/TC-instruct-DPO-Q5_K_S.gguf) | Q5_K_S | 5.018 GB | large, low quality loss - recommended |
| [TC-instruct-DPO-Q5_K_M.gguf](https://huggingface.co/tensorblock/tanamettpk_TC-instruct-DPO-GGUF/blob/main/TC-instruct-DPO-Q5_K_M.gguf) | Q5_K_M | 5.151 GB | large, very low quality loss - recommended |
| [TC-instruct-DPO-Q6_K.gguf](https://huggingface.co/tensorblock/tanamettpk_TC-instruct-DPO-GGUF/blob/main/TC-instruct-DPO-Q6_K.gguf) | Q6_K | 5.964 GB | very large, extremely low quality loss |
| [TC-instruct-DPO-Q8_0.gguf](https://huggingface.co/tensorblock/tanamettpk_TC-instruct-DPO-GGUF/blob/main/TC-instruct-DPO-Q8_0.gguf) | Q8_0 | 7.724 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/tanamettpk_TC-instruct-DPO-GGUF --include "TC-instruct-DPO-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/tanamettpk_TC-instruct-DPO-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```