teresayong's picture
Upload PPO LunarLander-v2 trained agent
9fb3957 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7917a7587ac0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7917a7587b50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7917a7587be0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7917a7587c70>", "_build": "<function ActorCriticPolicy._build at 0x7917a7587d00>", "forward": "<function ActorCriticPolicy.forward at 0x7917a7587d90>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7917a7587e20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7917a7587eb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7917a7587f40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7917a7588040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7917a75880d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7917a7588160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7917a752c2c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1728441942762568157, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANpsgb2E+3o/dhr9vPnKdb4kOQ+9Qin9uwAAAAAAAAAAmiFHvVwrU7qCTxe0vo4Jr2sLSbvCAZ0zAACAPwAAgD9YcaW+IEuBPti/UD59CVm+Tp1zvSz9OT4AAAAAAAAAAE2MhL3oooC8yDF8PDubED2fhNu92kziPQAAgD8AAIA/c+IMvrvoMD/yHn29UTSfvkKHpb2I0Ni9AAAAAAAAAAAAvck8DjpcPwXUJ71zCIa+EniKPK37TbsAAAAAAAAAAIM4W76aOa4+LeMDPi5Nk77RkVi950m5vAAAAAAAAAAAGsksva/wMT2rNzk+aqMGvt4rHT1q65+9AAAAAAAAAACmeg0+uAqrPvbRCL4p9jK+9RmouzTjB70AAAAAAAAAAFMxEb5GoZc+Ob8LPsCMZb4YFgS99BEjvQAAAAAAAAAAABxCvo0+Nz6onyk+twEhvoexV7xdLYy9AAAAAAAAAABNKls95atNPkj5A74TGzO+eFcSvF5Cjr0AAAAAAAAAAJoObb2PQz47EnOHvRDKJr4tCkG9/ruYPQAAgD8AAAAAANxOvTQAzT1rqRo+oCVpvmkwdz1Zaw68AAAAAAAAAACg8yU+A/gsP1a3vrtPDpK+oOhnPWdZhrwAAAAAAAAAAJrEG73uipG8KQEZvZc7JjzBvgC+elQEPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEXudCmdiGMAWyUTTcBjAF0lEdAkX36jvd/KHV9lChoBkdAcC3LpzLfUGgHTX0BaAhHQJF+bXumaYx1fZQoaAZHQHDwB0lqrR1oB01PAWgIR0CRftF+d9UkdX2UKGgGR0BhNNKK508vaAdN6ANoCEdAkZAkxqO94HV9lChoBkdAcBi5jYqXnmgHTSEBaAhHQJGQzhZQpF11fZQoaAZHQG/poRqXWvtoB00sAWgIR0CRkOQ9ic5KdX2UKGgGR0BxCWtDD0lJaAdNNwFoCEdAkZGf5pJwsHV9lChoBkdANE/NmlImPmgHTQQBaAhHQJGRrXnQpnZ1fZQoaAZHQG/fPhZQpF1oB00+AWgIR0CRkfEQoTf0dX2UKGgGR0Bxsxcs189faAdNNwFoCEdAkZK5LuhK2HV9lChoBkdAcGyKnvUjLWgHTR0BaAhHQJGV1z90ihZ1fZQoaAZHQHCOFzySV4ZoB00vAWgIR0CRl53yZrpJdX2UKGgGR0Bw++39aUzLaAdNVgFoCEdAkZsXw5NoJ3V9lChoBkdAbQjLDAJswmgHTRwBaAhHQJGbnCzkZJl1fZQoaAZHQFmRrlNlAeJoB03oA2gIR0CRnHFuejEfdX2UKGgGR0BxbGJemelLaAdNPAFoCEdAkZyiAMDwIHV9lChoBkdAccnNRm9QGmgHTUgBaAhHQJGddf8dgfF1fZQoaAZHQHAONIGyHEdoB00aAWgIR0CRnfzk6tDEdX2UKGgGR0BxPpPSDyvtaAdNPAFoCEdAkZ4HD7655XV9lChoBkdAcC9VawD/2mgHTSkBaAhHQJGeZWcSXdF1fZQoaAZHQG9NWRigCfZoB01FAWgIR0CRnqTcIqsmdX2UKGgGR0Bv5ldcB2fTaAdNFQFoCEdAkZ9tdRiw0XV9lChoBkdAcmHKgqVhTmgHTUcBaAhHQJGgKso2GZh1fZQoaAZHQG/pcJMQEp1oB01ZAWgIR0CRoOyeqaPTdX2UKGgGR0ByIue4Cp3paAdNPAFoCEdAkaMYl+mWMXV9lChoBkdAcUY5rxiG4GgHTb0BaAhHQJGj5tVJcxF1fZQoaAZHQG1EsPatcOdoB00vAWgIR0CRo/cpb2UTdX2UKGgGR0BxsKqNp/PPaAdNGgFoCEdAkaVbeVLSNXV9lChoBkdAX01J17pmmWgHTegDaAhHQJGmsI0IkZ91fZQoaAZHQHFCcJY1YQtoB000AWgIR0CRpxbj94u9dX2UKGgGR0ByVar5qM3qaAdNNAFoCEdAkac6Yu01InV9lChoBkdAcYeOjqOcUmgHTVcBaAhHQJGn3/Khcqx1fZQoaAZHQG+d8MuvlltoB000AWgIR0CRqBvze40/dX2UKGgGR0BwknfZVXFMaAdNNwFoCEdAkag8hC+lCXV9lChoBkdAcMi1rIo3JmgHTUMBaAhHQJGoRUhmoR91fZQoaAZHQHJFtk8RtgtoB003AWgIR0CRqIq7iADrdX2UKGgGR0BxzFWEK3NLaAdNTgFoCEdAkalW0eEIxHV9lChoBkdAcbvDxb0OE2gHTR0BaAhHQJGp9kMCtA91fZQoaAZHQHEhPIGQjlhoB00+AWgIR0CRqjUwztTldX2UKGgGR0BvhdVDKHO9aAdNYgFoCEdAkaqFjqfOEHV9lChoBkdAbYJOBUaQ3mgHTSIBaAhHQJGsvTYukDZ1fZQoaAZHQG+xkYXO4XpoB01KAWgIR0CRrWKvV3EAdX2UKGgGR0BwCev8qFyraAdNRQFoCEdAka4Cn1nM+3V9lChoBkdAbVUqgh8pkWgHTTUBaAhHQJGu5OmBOHp1fZQoaAZHQHDP2ig00nBoB00ZAWgIR0CRr71Muez2dX2UKGgGR0BwP/MV1wHaaAdNOgFoCEdAkbBzgQ6IWXV9lChoBkdAbgh9Aood/GgHTT0BaAhHQJGw6r3j+711fZQoaAZHQHMJxVMmF8JoB00iAWgIR0CRsSZjx0+1dX2UKGgGR0ByF7+OwPiDaAdNJwFoCEdAkbEnGjsUqXV9lChoBkdAcM0LSeAd4mgHTS4BaAhHQJGxeRr8BMl1fZQoaAZHQHDayYLLIPtoB01CAWgIR0CRsbjFQ2uQdX2UKGgGR0BtBomeDnNgaAdNRAFoCEdAkbJeQIUrTnV9lChoBkdAcZRhQFcIJWgHTScBaAhHQJGzDU8V58l1fZQoaAZHQG6ddfsu3+doB01KAWgIR0CRs2KQJXyRdX2UKGgGR0ByteDxsl9jaAdNHgFoCEdAkbNpDJEH+3V9lChoBkdAccCl5WzWw2gHTT4BaAhHQJGz3hqCYkV1fZQoaAZHQHJEblaKUFBoB00oAWgIR0CRxxd1MdtEdX2UKGgGR0BxATNbC79RaAdNJQFoCEdAkceuOjqOcXV9lChoBkdAa+h41P3ztmgHTTgBaAhHQJHJYk7fYSR1fZQoaAZHQEla0+C9RJpoB00KAWgIR0CRyZEdvKlpdX2UKGgGR0BwZ+QbMotuaAdNEQFoCEdAkcts9r4333V9lChoBkdAbKkq0+kgwGgHTSEBaAhHQJHMozeoDPp1fZQoaAZHQHEMWE4//vRoB00oAWgIR0CRzZ2Q4jrzdX2UKGgGR0BwvFvYODraaAdNNQFoCEdAkc25BcAzYXV9lChoBkdAcP/AXVLBbmgHTS4BaAhHQJHOWO+7Dl51fZQoaAZHQG27bDVH4GloB00VAWgIR0CRz49lEqlQdX2UKGgGR0BwjEGPgeijaAdNSAFoCEdAkdDNTYNAknV9lChoBkdAbiib1h9b5mgHTTQBaAhHQJHRo5eZ5Rl1fZQoaAZHQHH+Fiz9jwxoB005AWgIR0CR0dflIVdpdX2UKGgGR0BxsCYgJTl1aAdNKAFoCEdAkdIGf029+XV9lChoBkdAcl4Y+jdpI2gHTVUBaAhHQJHWJd1MdtF1fZQoaAZHQG6mk4vN/vxoB01PAWgIR0CR1nZB9kSVdX2UKGgGR0BwfB8Ti83/aAdNWAFoCEdAkdhsI7eVLXV9lChoBkdAbhEtr9ETg2gHTVoBaAhHQJHYuD+R5kd1fZQoaAZHQHCJzzRQaaVoB00iAWgIR0CR2P+dK/VRdX2UKGgGR0BunXWSU1Q7aAdNQwFoCEdAkdlircTJyXV9lChoBkdAb0qRWcSXdGgHTSMBaAhHQJHZu2LHdXV1fZQoaAZHQG9cJBHCoCNoB001AWgIR0CR2nB6KLsKdX2UKGgGR0Bwv3H+6y0KaAdNTgFoCEdAkdvQ0XP7enV9lChoBkdAbuSFaB7NS2gHTUQBaAhHQJHcXaAWi111fZQoaAZHQHJ6MP8Q7LdoB00dAWgIR0CR3IJE6T4ddX2UKGgGR0BuqZmbsniOaAdNQwFoCEdAkd4FXA/LT3V9lChoBkdAcO+OPvKEFmgHTV4BaAhHQJHeM3juKGd1fZQoaAZHQHH0Ju2qkuZoB01mAWgIR0CR31tT1kDqdX2UKGgGR0BvX79ycTakaAdNQwFoCEdAkeI0rXlKb3V9lChoBkdAckTedkJ8fGgHTR4BaAhHQJHj5YMfA9F1fZQoaAZHQHMCHq3VkMFoB003AWgIR0CR5Df16E8JdX2UKGgGR0BxAhYQrc0taAdNfQFoCEdAkeTdYbKif3V9lChoBkdAcP2DR+jM3mgHTUUBaAhHQJHlFkbxVhl1fZQoaAZHQFtfcR15jYtoB03oA2gIR0CR5lVxCIDYdX2UKGgGR0By2GsHSncdaAdNdQFoCEdAkeZpHRTjvXV9lChoBkdAcgCJtSAH3WgHTUsBaAhHQJHmvgQ6IWR1fZQoaAZHQHI7Jo9LYf5oB01gAWgIR0CR5sZF5OafdX2UKGgGR0Bx4akk8ifQaAdNHQFoCEdAkebzDjzZpXV9lChoBkdAZaTgw482aWgHTegDaAhHQJHnnY150KZ1fZQoaAZHQHJZLl7tzCFoB007AWgIR0CR5+HY6GQCdX2UKGgGR0BuE89yLhrFaAdNgAFoCEdAkelGtEG7jHV9lChoBkdAcV17zTWoWGgHTUYBaAhHQJHpXpUxVQ11fZQoaAZHQHJA/RRdhRZoB01VAWgIR0CR6eGUwBYFdX2UKGgGR0Bs/N9v0h/zaAdNPgFoCEdAkeot/e+EiHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}